Menu Close

Question-43731




Question Number 43731 by Meritguide1234 last updated on 14/Sep/18
Answered by MJS last updated on 14/Sep/18
∫(((x^2 −3x+(1/3))/(x^3 −x+1)))^2 dx=(1/9)∫(((3x^2 +9x+1)^2 )/((x^3 −x+1)^2 ))dx  once again my beloved method of Ostrogradski  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcf(Q(x), Q^′ (x))=x^3 −x+1  Q_2 (x)=((Q(x))/(Q_1 (x)))=x^3 −x+1  P_1 (x)=ax^2 +bx+c  P_2 (x)=dx^2 +ex+f  the factors can be found by setting  ((P(x))/(Q(x)))=((P_1 ′(x)Q_1 (x)−P_1 (x)Q_1 ′(x))/(Q_1 ^2 (x{))+((P_2 (x))/(Q_2 (x)))  P_1 (x)=−9x^2 +27x−26  P_2 (x)=0  ⇒ (1/9)∫(((3x^2 +9x+1)^2 )/((x^3 −x+1)^2 ))dx=−((9x^2 −27x+26)/(9(x^3 −x+1)))+C
(x23x+13x3x+1)2dx=19(3x2+9x+1)2(x3x+1)2dxonceagainmybelovedmethodofOstrogradskiP(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxQ1(x)=gcf(Q(x),Q(x))=x3x+1Q2(x)=Q(x)Q1(x)=x3x+1P1(x)=ax2+bx+cP2(x)=dx2+ex+fthefactorscanbefoundbysettingP(x)Q(x)=P1(x)Q1(x)P1(x)Q1(x)Q12(x{+P2(x)Q2(x)P1(x)=9x2+27x26P2(x)=019(3x2+9x+1)2(x3x+1)2dx=9x227x+269(x3x+1)+C
Commented by Meritguide1234 last updated on 15/Sep/18

Leave a Reply

Your email address will not be published. Required fields are marked *