Question Number 43822 by peter frank last updated on 15/Sep/18
Answered by Joel578 last updated on 17/Sep/18
$$\left({b}\right) \\ $$$$\mathrm{4cosh}\:{x}\:+\:\mathrm{3cosh}\:{y}\:=\:\mathrm{10}\:\:\:\:…\left({i}\right) \\ $$$$\mathrm{4sinh}\:{x}\:+\:\mathrm{3sinh}\:{y}\:=\:\mathrm{7}\:\:\:\:\:\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$$\mathrm{16cosh}^{\mathrm{2}} \:{x}\:+\:\mathrm{24}\:\mathrm{cosh}\:{x}\:\mathrm{cosh}\:{y}\:+\:\mathrm{9cosh}^{\mathrm{2}} \:{y}\:=\:\mathrm{100}\:\:\:…\left({iii}\right)\:\:\:\: \\ $$$$\mathrm{16sinh}^{\mathrm{2}} \:{x}\:+\:\mathrm{24}\:\mathrm{sinh}\:\:{x}\:\mathrm{sinh}\:\:{y}\:+\:\mathrm{9sinh}^{\mathrm{2}} \:{y}\:=\:\mathrm{49}\:\:\:\:…\left({iv}\right) \\ $$$$ \\ $$$$\left({iii}\right)\:−\:\left({iv}\right) \\ $$$$\mathrm{16}\left(\mathrm{cosh}^{\mathrm{2}} \:{x}\:−\:\mathrm{sinh}^{\mathrm{2}} \:{x}\right)\:+\:\mathrm{24}\left(\mathrm{cosh}\:{x}\:\mathrm{cosh}\:{y}\:−\:\mathrm{sinh}\:\:{x}\:\mathrm{sinh}\:\:{y}\right)\:+\:\mathrm{9}\left(\mathrm{cosh}^{\mathrm{2}} \:{y}\:−\:\mathrm{sinh}^{\mathrm{2}} \:{y}\right)\:=\:\mathrm{51} \\ $$$$\mathrm{16}\:+\:\mathrm{24}\:\mathrm{cosh}\:\left({x}\:−\:{y}\right)\:+\:\mathrm{9}\:=\:\mathrm{51} \\ $$$$\mathrm{cosh}\:\left({x}\:−\:{y}\right)\:=\:\frac{\mathrm{26}}{\mathrm{24}}\:=\:\frac{\mathrm{13}}{\mathrm{12}} \\ $$$$\frac{{e}^{{x}−{y}} \:+\:{e}^{{y}−{x}} }{\mathrm{2}}\:=\:\frac{\mathrm{13}}{\mathrm{12}} \\ $$$$\frac{{e}^{{x}} }{{e}^{{y}} }\:+\:\frac{{e}^{{y}} }{{e}^{{x}} }\:=\:\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$ \\ $$$$\left({i}\right)\:+\:\left({ii}\right) \\ $$$$\mathrm{4}\left(\mathrm{cosh}\:{x}\:+\:\mathrm{sinh}\:{x}\right)\:+\:\mathrm{3}\left(\mathrm{cosh}\:{y}\:+\:\mathrm{sinh}\:{y}\right)\:=\:\mathrm{17} \\ $$$$\mathrm{4}{e}^{{x}} \:+\:\mathrm{3}{e}^{{y}} \:=\:\mathrm{17} \\ $$$$ \\ $$$$\mathrm{Let}\:{e}^{{x}} \:=\:{a},\:\:{e}^{{y}} \:=\:{b} \\ $$$$\frac{{a}}{{b}}\:+\:\frac{{b}}{{a}}\:=\:\frac{\mathrm{13}}{\mathrm{6}}\:\:\rightarrow\:\:\frac{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} }{{ab}}\:=\:\frac{\mathrm{13}}{\mathrm{6}}\:\rightarrow\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:=\:\frac{\mathrm{13}}{\mathrm{6}}{ab} \\ $$$$\:\mathrm{4}{a}\:+\:\mathrm{3}{b}\:=\:\mathrm{17}\:\:\rightarrow\:\:{a}\:=\:\frac{\mathrm{17}\:−\:\mathrm{3}{b}}{\mathrm{4}} \\ $$$$ \\ $$$$\left(\frac{\mathrm{17}\:−\:\mathrm{3}{b}}{\mathrm{4}}\right)^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:=\:\frac{\mathrm{13}}{\mathrm{6}}\left(\frac{\mathrm{17}\:−\:\mathrm{3}{b}}{\mathrm{4}}\right){b} \\ $$$$\frac{\mathrm{289}\:−\:\mathrm{102}{b}\:+\:\mathrm{25}{b}^{\mathrm{2}} }{\mathrm{2}}\:=\:\frac{\mathrm{221}{b}\:−\:\mathrm{39}{b}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\mathrm{3}\left(\mathrm{289}\:−\:\mathrm{102}{b}\:+\:\mathrm{25}{b}^{\mathrm{2}} \right)\:=\:\mathrm{2}\left(\mathrm{221}{b}\:−\:\mathrm{39}{b}^{\mathrm{2}} \right) \\ $$$$\mathrm{153}{b}^{\mathrm{2}} \:−\:\mathrm{748}{b}\:+\:\mathrm{867}\:=\:\mathrm{0} \\ $$$$\mathrm{9}{b}^{\mathrm{2}} \:−\:\mathrm{44}{b}\:+\:\mathrm{51}\:=\:\mathrm{0} \\ $$$${b}\:=\:\mathrm{3}\:\:\vee\:\:{b}\:=\:\frac{\mathrm{17}}{\mathrm{9}} \\ $$$$ \\ $$$${b}\:=\:\mathrm{3}\:\:\rightarrow\:\:{a}\:=\:\mathrm{2}\: \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{ln}\:\mathrm{2},\:\:{y}\:=\:\mathrm{ln}\:\mathrm{3} \\ $$$$ \\ $$$${b}\:=\:\frac{\mathrm{17}}{\mathrm{9}}\:\:\rightarrow\:\:{a}\:=\:\frac{\mathrm{17}}{\mathrm{6}} \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{ln}\:\left(\frac{\mathrm{17}}{\mathrm{6}}\right),\:\:{y}\:=\:\mathrm{ln}\:\left(\frac{\mathrm{17}}{\mathrm{9}}\right) \\ $$
Commented by peter frank last updated on 16/Sep/18
$${find}\:{x}\:{and}\:{y} \\ $$