Menu Close

Question-43822




Question Number 43822 by peter frank last updated on 15/Sep/18
Answered by Joel578 last updated on 17/Sep/18
(b)  4cosh x + 3cosh y = 10    ...(i)  4sinh x + 3sinh y = 7        ...(ii)    16cosh^2  x + 24 cosh x cosh y + 9cosh^2  y = 100   ...(iii)      16sinh^2  x + 24 sinh  x sinh  y + 9sinh^2  y = 49    ...(iv)    (iii) − (iv)  16(cosh^2  x − sinh^2  x) + 24(cosh x cosh y − sinh  x sinh  y) + 9(cosh^2  y − sinh^2  y) = 51  16 + 24 cosh (x − y) + 9 = 51  cosh (x − y) = ((26)/(24)) = ((13)/(12))  ((e^(x−y)  + e^(y−x) )/2) = ((13)/(12))  (e^x /e^y ) + (e^y /e^x ) = ((13)/6)    (i) + (ii)  4(cosh x + sinh x) + 3(cosh y + sinh y) = 17  4e^x  + 3e^y  = 17    Let e^x  = a,  e^y  = b  (a/b) + (b/a) = ((13)/6)  →  ((a^2  + b^2 )/(ab)) = ((13)/6) → a^2  + b^2  = ((13)/6)ab   4a + 3b = 17  →  a = ((17 − 3b)/4)    (((17 − 3b)/4))^2  + b^2  = ((13)/6)(((17 − 3b)/4))b  ((289 − 102b + 25b^2 )/2) = ((221b − 39b^2 )/3)  3(289 − 102b + 25b^2 ) = 2(221b − 39b^2 )  153b^2  − 748b + 867 = 0  9b^2  − 44b + 51 = 0  b = 3  ∨  b = ((17)/9)    b = 3  →  a = 2   ⇒ x = ln 2,  y = ln 3    b = ((17)/9)  →  a = ((17)/6)  ⇒ x = ln (((17)/6)),  y = ln (((17)/9))
(b)4coshx+3coshy=10(i)4sinhx+3sinhy=7(ii)16cosh2x+24coshxcoshy+9cosh2y=100(iii)16sinh2x+24sinhxsinhy+9sinh2y=49(iv)(iii)(iv)16(cosh2xsinh2x)+24(coshxcoshysinhxsinhy)+9(cosh2ysinh2y)=5116+24cosh(xy)+9=51cosh(xy)=2624=1312exy+eyx2=1312exey+eyex=136(i)+(ii)4(coshx+sinhx)+3(coshy+sinhy)=174ex+3ey=17Letex=a,ey=bab+ba=136a2+b2ab=136a2+b2=136ab4a+3b=17a=173b4(173b4)2+b2=136(173b4)b289102b+25b22=221b39b233(289102b+25b2)=2(221b39b2)153b2748b+867=09b244b+51=0b=3b=179b=3a=2x=ln2,y=ln3b=179a=176x=ln(176),y=ln(179)
Commented by peter frank last updated on 16/Sep/18
find x and y
findxandy

Leave a Reply

Your email address will not be published. Required fields are marked *