Question Number 43824 by Necxx last updated on 15/Sep/18
Answered by MJS last updated on 16/Sep/18
$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\sqrt{\pi} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}!=\mathrm{1} \\ $$$$\left(\mathrm{B}\right)\:\:\mathrm{sin}\:\mathrm{45}°\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\left(\mathrm{C}\right)\:\:\sqrt{\mathrm{arccos}\:−\mathrm{1}}=\sqrt{\pi} \\ $$$$\left(\mathrm{D}\right)\:\:\sqrt{\mathrm{arcsin}\:\mathrm{1}}=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{2}} \\ $$$$\Rightarrow\:\left(\mathrm{C}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{right}\:\mathrm{answer} \\ $$
Commented by Necxx last updated on 16/Sep/18
$${thank}\:{you}\:{sir} \\ $$