Menu Close

Question-43824




Question Number 43824 by Necxx last updated on 15/Sep/18
Answered by MJS last updated on 16/Sep/18
((1/2))!=((√π)/2)  ((1/2))!+((1/2))!=(√π)  (A) 1!=1  (B)  sin 45° =((√2)/2)  (C)  (√(arccos −1))=(√π)  (D)  (√(arcsin 1))=((√(2π))/2)  ⇒ (C) is the right answer
$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\sqrt{\pi} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}!=\mathrm{1} \\ $$$$\left(\mathrm{B}\right)\:\:\mathrm{sin}\:\mathrm{45}°\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\left(\mathrm{C}\right)\:\:\sqrt{\mathrm{arccos}\:−\mathrm{1}}=\sqrt{\pi} \\ $$$$\left(\mathrm{D}\right)\:\:\sqrt{\mathrm{arcsin}\:\mathrm{1}}=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{2}} \\ $$$$\Rightarrow\:\left(\mathrm{C}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{right}\:\mathrm{answer} \\ $$
Commented by Necxx last updated on 16/Sep/18
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *