Menu Close

Question-43945




Question Number 43945 by ajfour last updated on 18/Sep/18
Commented by ajfour last updated on 18/Sep/18
The rectangular plate can swing  freely about the diagonal but is  at balance, not turning any more.  Find p, h in terms of a,b,d.
$${The}\:{rectangular}\:{plate}\:{can}\:{swing} \\ $$$${freely}\:{about}\:{the}\:{diagonal}\:{but}\:{is} \\ $$$${at}\:{balance},\:{not}\:{turning}\:{any}\:{more}. \\ $$$$\boldsymbol{{Find}}\:\boldsymbol{{p}},\:\boldsymbol{{h}}\:\boldsymbol{{in}}\:\boldsymbol{{terms}}\:\boldsymbol{{of}}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{d}}. \\ $$
Answered by MrW3 last updated on 19/Sep/18
G=(√(a^2 +b^2 ))=length of diagonal  H=(√(G^2 −d^2 ))=(√(a^2 +b^2 −d^2 ))=height of topmost corner  (e/b)=(b/G)⇒e=(b^2 /G)  (f/a)=(a/G)⇒f=(a^2 /G)  p=(e/G)×H=(b^2 /(a^2 +b^2 ))(√(a^2 +b^2 −d^2 ))  h=(f/G)×H=(a^2 /(a^2 +b^2 ))(√(a^2 +b^2 −d^2 ))
$${G}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }={length}\:{of}\:{diagonal} \\ $$$${H}=\sqrt{{G}^{\mathrm{2}} −{d}^{\mathrm{2}} }=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{d}^{\mathrm{2}} }={height}\:{of}\:{topmost}\:{corner} \\ $$$$\frac{{e}}{{b}}=\frac{{b}}{{G}}\Rightarrow{e}=\frac{{b}^{\mathrm{2}} }{{G}} \\ $$$$\frac{{f}}{{a}}=\frac{{a}}{{G}}\Rightarrow{f}=\frac{{a}^{\mathrm{2}} }{{G}} \\ $$$${p}=\frac{{e}}{{G}}×{H}=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{d}^{\mathrm{2}} } \\ $$$${h}=\frac{{f}}{{G}}×{H}=\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{d}^{\mathrm{2}} } \\ $$
Commented by MrW3 last updated on 19/Sep/18
Commented by ajfour last updated on 19/Sep/18
Great simplification Sir.  Awesome solution.
$${Great}\:{simplification}\:{Sir}. \\ $$$${Awesome}\:{solution}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *