Menu Close

Question-44088




Question Number 44088 by peter frank last updated on 21/Sep/18
Answered by $@ty@m last updated on 21/Sep/18
(a) ∠BCA=∠BCD (same angle)  ∠ABC=∠BDC (right angle)  ∠BAC=∠DBC (third angle)  ∴△ABC∼△BDC  b(i) ∵ corrresponding sides   of  similar triangles are in same propotion.  ∴(x/a)=(a/b)  .....(i)  Q.E.D.  (ii) In the similar way as done  in part (a), we can show that  ∴△ABC∼△BDA  ⇒ ((b−x)/c)=(c/b) ....(ii)  Q.E.D.  Last Part:  From (ii),  b^2 −bx=c^2   b^2 −a^2 =c^2  {∵ bx=a^2  from (i)  b^2 =a^2 +c^2
$$\left(\boldsymbol{{a}}\right)\:\angle{BCA}=\angle{BCD}\:\left({same}\:{angle}\right) \\ $$$$\angle{ABC}=\angle{BDC}\:\left({right}\:{angle}\right) \\ $$$$\angle{BAC}=\angle{DBC}\:\left({third}\:{angle}\right) \\ $$$$\therefore\bigtriangleup{ABC}\sim\bigtriangleup{BDC} \\ $$$$\boldsymbol{{b}}\left(\boldsymbol{{i}}\right)\:\because\:{corrresponding}\:{sides}\: \\ $$$${of}\:\:{similar}\:{triangles}\:{are}\:{in}\:{same}\:{propotion}. \\ $$$$\therefore\frac{{x}}{{a}}=\frac{{a}}{{b}}\:\:…..\left({i}\right) \\ $$$${Q}.{E}.{D}. \\ $$$$\left(\boldsymbol{{ii}}\right)\:{In}\:{the}\:{similar}\:{way}\:{as}\:{done} \\ $$$${in}\:{part}\:\left({a}\right),\:{we}\:{can}\:{show}\:{that} \\ $$$$\therefore\bigtriangleup{ABC}\sim\bigtriangleup{BDA} \\ $$$$\Rightarrow\:\frac{{b}−{x}}{{c}}=\frac{{c}}{{b}}\:….\left({ii}\right) \\ $$$${Q}.{E}.{D}. \\ $$$$\boldsymbol{{Last}}\:\boldsymbol{{Part}}: \\ $$$${From}\:\left({ii}\right), \\ $$$${b}^{\mathrm{2}} −{bx}={c}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} −{a}^{\mathrm{2}} ={c}^{\mathrm{2}} \:\left\{\because\:{bx}={a}^{\mathrm{2}} \:{from}\:\left({i}\right)\right. \\ $$$${b}^{\mathrm{2}} ={a}^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *