Menu Close

Question-44096




Question Number 44096 by peter frank last updated on 21/Sep/18
Answered by $@ty@m last updated on 21/Sep/18
(a) cos A=((b^2 +c^2 −a^2 )/(2bc))  a^2 =b^2 +c^2 −2bccos A  ⇒a^2 =b^2 +c^2 −2bc(1−2sin^2 (A/2))  ⇒a^2 =(b−c)^2 +4bcsin^2 (A/2)
$$\left({a}\right)\:\mathrm{cos}\:{A}=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}} \\ $$$${a}^{\mathrm{2}} ={b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{bc}\mathrm{cos}\:{A} \\ $$$$\Rightarrow{a}^{\mathrm{2}} ={b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{bc}\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \frac{{A}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\left({b}−{c}\right)^{\mathrm{2}} +\mathrm{4}{bc}\mathrm{sin}\:^{\mathrm{2}} \frac{{A}}{\mathrm{2}} \\ $$
Commented by math1967 last updated on 21/Sep/18
a^2 =(b−c)^2 +4bcsin^2 (A/2)
$${a}^{\mathrm{2}} =\left({b}−{c}\right)^{\mathrm{2}} +\mathrm{4}{bcsin}^{\mathrm{2}} \frac{{A}}{\mathrm{2}} \\ $$
Commented by $@ty@m last updated on 21/Sep/18
Thanks for correction.  It′s typing mistake.
$${Thanks}\:{for}\:{correction}. \\ $$$${It}'{s}\:{typing}\:{mistake}. \\ $$
Commented by math1967 last updated on 21/Sep/18
It′s ok sir
$${It}'{s}\:{ok}\:{sir} \\ $$
Answered by $@ty@m last updated on 21/Sep/18
(b) Let ((sin A)/a)=((sin B)/b)=((sin C)/c)=R  RHS=((sin (A−B))/(sin (A+B)))  =((sin Acos B−cos Asin B)/(sin C))  =((aRcos B−bRcos A)/(cR))  =((acos B−bcos A)/c)  =((a×((a^2 +c^2 −b^2 )/(2ac))−b×((b^2 +c^2 −a^2 )/(2bc)))/c)  =((a^2 +c^2 −b^2 −b^2 −c^2 +a^2 )/(2c^2 ))  =((a^2 −b^2 )/c^2 )  =LHS
$$\left({b}\right)\:{Let}\:\frac{\mathrm{sin}\:{A}}{{a}}=\frac{\mathrm{sin}\:{B}}{{b}}=\frac{\mathrm{sin}\:{C}}{{c}}={R} \\ $$$${RHS}=\frac{\mathrm{sin}\:\left({A}−{B}\right)}{\mathrm{sin}\:\left({A}+{B}\right)} \\ $$$$=\frac{\mathrm{sin}\:{A}\mathrm{cos}\:{B}−\mathrm{cos}\:{A}\mathrm{sin}\:{B}}{\mathrm{sin}\:{C}} \\ $$$$=\frac{{aR}\mathrm{cos}\:{B}−{bR}\mathrm{cos}\:{A}}{{cR}} \\ $$$$=\frac{{a}\mathrm{cos}\:{B}−{b}\mathrm{cos}\:{A}}{{c}} \\ $$$$=\frac{{a}×\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ac}}−{b}×\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}}{{c}} \\ $$$$=\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{a}^{\mathrm{2}} }{\mathrm{2}{c}^{\mathrm{2}} } \\ $$$$=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{c}^{\mathrm{2}} } \\ $$$$={LHS} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *