Menu Close

Question-44395




Question Number 44395 by ajfour last updated on 28/Sep/18
Commented by ajfour last updated on 28/Sep/18
Find radius of the green circle,  in terms of R and r.
$${Find}\:{radius}\:{of}\:{the}\:{green}\:{circle}, \\ $$$${in}\:{terms}\:{of}\:{R}\:{and}\:{r}. \\ $$
Commented by ajfour last updated on 28/Sep/18
Commented by ajfour last updated on 28/Sep/18
(R+s)^2 =x^2 +(R−s)^2   ⇒  x^2 = 4Rs ;  y^2 = 4rs  and    (x+y)^2 = 4rR    ⇒   xy = 4s(√(Rr))  ⇒      4s(R+r)+8s(√(Rr)) = 4Rr    ⇒   s = ((Rr)/(R+r+2(√(Rr))))     or   s= ((Rr)/(((√R)+(√r) )^2 )) .
$$\left({R}+{s}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\left({R}−{s}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} =\:\mathrm{4}{Rs}\:;\:\:{y}^{\mathrm{2}} =\:\mathrm{4}{rs} \\ $$$${and}\:\:\:\:\left({x}+{y}\right)^{\mathrm{2}} =\:\mathrm{4}{rR} \\ $$$$\:\:\Rightarrow\:\:\:{xy}\:=\:\mathrm{4}{s}\sqrt{{Rr}} \\ $$$$\Rightarrow\:\:\:\:\:\:\mathrm{4}{s}\left({R}+{r}\right)+\mathrm{8}{s}\sqrt{{Rr}}\:=\:\mathrm{4}{Rr} \\ $$$$\:\:\Rightarrow\:\:\:\boldsymbol{{s}}\:=\:\frac{\boldsymbol{{Rr}}}{\boldsymbol{{R}}+\boldsymbol{{r}}+\mathrm{2}\sqrt{\boldsymbol{{Rr}}}} \\ $$$$\:\:\:{or}\:\:\:\boldsymbol{{s}}=\:\frac{\boldsymbol{{Rr}}}{\left(\sqrt{\boldsymbol{{R}}}+\sqrt{\boldsymbol{{r}}}\:\right)^{\mathrm{2}} }\:. \\ $$
Answered by rahul 19 last updated on 28/Sep/18
Let radius of green circle = x  ⇒ (1/( (√x))) = (1/( (√R))) + (1/( (√r))) .
$${Let}\:{radius}\:{of}\:{green}\:{circle}\:=\:{x} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\:\sqrt{{x}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{{R}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{{r}}}\:. \\ $$
Commented by ajfour last updated on 28/Sep/18
wherefrom do you infer this ?
$${wherefrom}\:{do}\:{you}\:{infer}\:{this}\:? \\ $$
Commented by rahul 19 last updated on 28/Sep/18
Sir, you have posted the same Q. some  time back and that time i gave a proof  also , i remembered the result :)
$${Sir},\:{you}\:{have}\:{posted}\:{the}\:{same}\:{Q}.\:{some} \\ $$$${time}\:{back}\:{and}\:{that}\:{time}\:{i}\:{gave}\:{a}\:{proof} \\ $$$$\left.{also}\:,\:{i}\:{remembered}\:{the}\:{result}\::\right) \\ $$
Commented by ajfour last updated on 28/Sep/18
seems likely..
$${seems}\:{likely}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *