Menu Close

Question-44573




Question Number 44573 by Raj Singh last updated on 01/Oct/18
Commented by maxmathsup by imad last updated on 01/Oct/18
let A =∫_0 ^(π/4)  ln(sin(2θ))dθ ⇒ A =_(2θ=t) ∫_0 ^(π/2) ln(sin(t))(dt/2)  =(1/2) ∫_0 ^(π/2)   ln(sint)dt  let I =∫_0 ^(π/2)  ln(sin(t))dt and J =∫_0 ^(π/2)  ln(cost)dt  changement t =(π/2)−u show that I =J ⇒2I =∫_0 ^(π/2) (ln(sint) +ln(cost))dt  =∫_0 ^(π/2)  ln((1/2)sin(2t))dt =−(π/2)ln(2) + ∫_0 ^(π/2)  ln(sin(2t))dt but  ∫_0 ^(π/2)  ln(sin(2t)dt =_(2t =u)    ∫_0 ^π  ln(sin(u))(du/2)  =(1/2){ ∫_0 ^(π/2)  ln(sin(u))du  + ∫_(π/2) ^π  ln(sinu)du} =(1/2) I  +(1/2) ∫_(π/2) ^π  ln(sinu)du but  ∫_(π/2) ^π   ln(sin(u))du =_(u =(π/2) +θ)     ∫_0 ^(π/2)  ln(cosθ)dθ =I ⇒  2I =−(π/2)ln(2) +I ⇒ I =−(π/2)ln(2) ⇒ A =−(π/4)ln(2) .
letA=0π4ln(sin(2θ))dθA=2θ=t0π2ln(sin(t))dt2=120π2ln(sint)dtletI=0π2ln(sin(t))dtandJ=0π2ln(cost)dtchangementt=π2ushowthatI=J2I=0π2(ln(sint)+ln(cost))dt=0π2ln(12sin(2t))dt=π2ln(2)+0π2ln(sin(2t))dtbut0π2ln(sin(2t)dt=2t=u0πln(sin(u))du2=12{0π2ln(sin(u))du+π2πln(sinu)du}=12I+12π2πln(sinu)dubutπ2πln(sin(u))du=u=π2+θ0π2ln(cosθ)dθ=I2I=π2ln(2)+II=π2ln(2)A=π4ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Oct/18
I=∫_0 ^(π/4) lnsin2θ dθ  I=∫_0 ^(π/4) lnsin2((π/4)−θ)dθ  =∫_0 ^(π/2) lncos2θdθ  2I=∫_0 ^(π/4) ln(sin2θ)+lncos2θ  dθ  2I=∫_0 ^(π/4) ln(((sin4θ)/2))dθ  2I=∫_0 ^(π/4) lnsin4θ dθ−ln2∫_0 ^(π/4)  dθ  2θ=t  so dθ=(dt/2)  2I=(1/2)∫_0 ^(π/2) lnsin2tdt−ln2×(π/4)    2I=(1/2)×2∫_0 ^(π/4) lnsin2t dt−ln2×(π/4)  2I=I−ln2×(π/4)  I=−ln2×(π/4)
I=0π4lnsin2θdθI=0π4lnsin2(π4θ)dθ=0π2lncos2θdθ2I=0π4ln(sin2θ)+lncos2θdθ2I=0π4ln(sin4θ2)dθ2I=0π4lnsin4θdθln20π4dθ2θ=tsodθ=dt22I=120π2lnsin2tdtln2×π42I=12×20π4lnsin2tdtln2×π42I=Iln2×π4I=ln2×π4

Leave a Reply

Your email address will not be published. Required fields are marked *