Question Number 44712 by peter frank last updated on 03/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Oct/18
$$\left.\mathrm{1}\right)\int\frac{{x}^{{n}−\mathrm{1}} }{{x}^{{n}} \left(\mathrm{1}+{x}^{{n}} \right)}{dx} \\ $$$${t}={x}^{{n}} \:\:\:{dt}={nx}^{{n}−\mathrm{1}} {dx} \\ $$$$\frac{\mathrm{1}}{{n}}\int\frac{{dt}}{{t}\left(\mathrm{1}+{t}\right)} \\ $$$$\frac{\mathrm{1}}{{n}}\left[\int\frac{\left(\mathrm{1}+{t}\right)−{t}}{{t}\left(\mathrm{1}+{t}\right)}{dt}\right. \\ $$$$\frac{\mathrm{1}}{{n}}\left[\int\frac{{dt}}{{t}}−\int\frac{{dt}}{\mathrm{1}+{t}}\right] \\ $$$$\frac{\mathrm{1}}{{n}}\left[{ln}\left(\frac{{t}}{\mathrm{1}+{t}}\right)\right]+{c} \\ $$$$\frac{\mathrm{1}}{{n}}\left[{ln}\left(\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}} }\right)\right]+{c} \\ $$
Commented by peter frank last updated on 03/Oct/18
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Oct/18
$$\left.\mathrm{3}\right){x}+\alpha={t} \\ $$$$\int\frac{{sin}\left({t}−\mathrm{2}\alpha\right)}{{sint}}{dt} \\ $$$$\int\frac{{sintcos}\mathrm{2}\alpha−{costsin}\mathrm{2}\alpha}{{sint}}{dt} \\ $$$${cos}\mathrm{2}\alpha\int{dt}−{sin}\mathrm{2}\alpha\int\frac{{cost}}{{sint}}{dt} \\ $$$${cos}\mathrm{2}\alpha\left({t}\right)−{sin}\mathrm{2}\alpha\:{lnsint}+{c} \\ $$$$\left({x}+\alpha\right){cos}\mathrm{2}\alpha−{sin}\mathrm{2}\alpha\:{lnsin}\left({x}+\alpha\right)+{c} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Oct/18
$${pls}\:{see}\:{it}\:{and}\:{chek}\:{the}\:{answer}\:{you}\:{provided} \\ $$$${along}\:{with}\:{question}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Oct/18
$${i}\:{think}\:{attached}\:{answer}\:{not}\:{correvct}… \\ $$
Commented by peter frank last updated on 03/Oct/18
$$\mathrm{true}\:\mathrm{sir}\:\mathrm{very}\:\mathrm{sorry} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Oct/18
$$\left.\mathrm{2}\right)\int\frac{\left({x}^{\mathrm{4}} −{x}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{{x}^{\mathrm{5}} }{dx} \\ $$$$\int\frac{\left\{{x}^{\mathrm{4}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)\right\}^{\frac{\mathrm{1}}{\mathrm{4}}} }{{x}^{\mathrm{5}} } \\ $$$$\int\frac{\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{{x}^{\mathrm{4}} }{dx} \\ $$$${t}=\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:\:\:\:{dt}=\mathrm{0}−\left(−\mathrm{3}\right){x}^{−\mathrm{4}} {dx} \\ $$$${dt}=\frac{\mathrm{3}{dx}}{{x}^{\mathrm{4}} } \\ $$$$\int{t}^{\frac{\mathrm{1}}{\mathrm{4}}} ×\frac{{dt}}{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}×\frac{{t}^{\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{1}} }{\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{1}}+{c} \\ $$$$\frac{\mathrm{4}}{\mathrm{15}}{t}^{\frac{\mathrm{5}}{\mathrm{4}}} +{c}\:\:\: \\ $$$$\frac{\mathrm{4}}{\mathrm{15}}×\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\frac{\mathrm{5}}{\mathrm{4}}} \:+{c} \\ $$$$ \\ $$$$ \\ $$
Commented by peter frank last updated on 03/Oct/18
$$\mathrm{thank}\:\mathrm{you} \\ $$