Question Number 44730 by Necxx last updated on 03/Oct/18
Commented by Necxx last updated on 03/Oct/18
$${please}\:{help}\:{with}\:{no}.\:\mathrm{5} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Oct/18
$${s}={ut}+\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \:{distance}\:{in}\:{t}\:{second} \\ $$$$ \\ $$$${distance}\:{covered}\:{in}\:{t}−\mathrm{1}\:{second}\: \\ $$$${s}_{{t}−\mathrm{1}} ={u}\left({t}−\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}{g}\left({t}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${s}−{s}_{{t}−\mathrm{1}} ={distance}\:{covered}\:{in}\:{last}\:{one}\:{second} \\ $$$$={u}\left({t}−{t}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}{g}\left({t}^{\mathrm{2}} −{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}\right) \\ $$$${s}_{{last}} ={u}+\frac{\mathrm{1}}{\mathrm{2}}{g}\left(\mathrm{2}{t}−\mathrm{1}\right) \\ $$$${now}\:{s}={h}\:\:\:\:{s}_{{last}} =\frac{\mathrm{9}{h}}{\mathrm{25}} \\ $$$$\frac{{s}_{{last}} }{{s}}=\frac{\frac{\mathrm{9}{h}}{\mathrm{25}}}{{h}}=\frac{\frac{\mathrm{1}}{\mathrm{2}}{g}\left(\mathrm{2}{t}−\mathrm{1}\right)}{\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\left[\:{u}=\mathrm{0}\:\:\right] \\ $$$$\frac{\mathrm{9}}{\mathrm{25}}=\frac{\mathrm{2}{t}−\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$$\mathrm{9}{t}^{\mathrm{2}} −\mathrm{50}{t}+\mathrm{25}=\mathrm{0} \\ $$$${t}=\frac{\mathrm{50}\pm\sqrt{\mathrm{2500}−\mathrm{900}}}{\mathrm{18}} \\ $$$${t}=\left(\frac{\mathrm{50}+\mathrm{40}}{\mathrm{18}}\right),\:\left(\frac{\mathrm{50}−\mathrm{40}}{\mathrm{18}}\right) \\ $$$${t}=\mathrm{5}\:{and}\:\left\{\frac{\mathrm{5}}{\mathrm{9}}\leftarrow{not}\:{feasible}\right\} \\ $$$${h}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{9}.\mathrm{8}×\mathrm{5}^{\mathrm{2}} \:=\mathrm{122}.\mathrm{5} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Necxx last updated on 04/Oct/18
$${yeah}…{Thank}\:{you}\:{so}\:{much}. \\ $$