Menu Close

Question-44811




Question Number 44811 by jasno91 last updated on 05/Oct/18
Commented by math khazana by abdo last updated on 05/Oct/18
x+(1/x)=4 ⇒(x+(1/x))^2 =16 ⇒x^2  +2+(1/x^2 ) =16 ⇒  x^2  +(1/x^2 ) =14.also (x^2 +(1/x^2 ))^2 =14^2  ⇒  x^4  +2+(1/x^4 ) =14^2  ⇒x^4  +(1/x^4 )=14^2 −2 .
$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{4}\:\Rightarrow\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} =\mathrm{16}\:\Rightarrow{x}^{\mathrm{2}} \:+\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:=\mathrm{16}\:\Rightarrow \\ $$$${x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:=\mathrm{14}.{also}\:\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} =\mathrm{14}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}^{\mathrm{4}} \:+\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:=\mathrm{14}^{\mathrm{2}} \:\Rightarrow{x}^{\mathrm{4}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }=\mathrm{14}^{\mathrm{2}} −\mathrm{2}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *