Question Number 44872 by ajfour last updated on 05/Oct/18
Commented by ajfour last updated on 05/Oct/18
$${Find}\:{equation}\:{of}\:{the}\:{rope}\:{curve}, \\ $$$${bottom}\:{end}\:{of}\:{rope}\:{is}\:{at}\:{the}\:{foot} \\ $$$${of}\:{the}\:{incline}\:{and}\:{a}\:{length}\:\boldsymbol{{b}}\:{of}\:{it} \\ $$$${is}\:{in}\:{contact}\:{with}\:{the}\:{frictionless} \\ $$$${incline}.\:{Height}\:{of}\:{ceiling}\:{is}\:\boldsymbol{{h}} \\ $$$${above}\:{the}\:{ground}. \\ $$
Answered by MrW3 last updated on 06/Oct/18
Commented by MrW3 last updated on 08/Oct/18
$${trying}\:{to}\:{solve}\:{the}\:{problem}\:{by}\:{using} \\ $$$${catenary}\:{equation}\:{directly}. \\ $$$$ \\ $$$${the}\:{hanging}\:{part}\:{of}\:{the}\:{rope}\:{AB}\:{is}\:{a} \\ $$$${part}\:{of}\:{the}\:{catenary}\:\:{curve}\:{ACD}. \\ $$$${let}\:\rho=\frac{{m}}{{l}} \\ $$$${tension}\:{in}\:{rope}\:{at}\:{point}\:{B}\:{is} \\ $$$${T}={b}\rho{g}\:\mathrm{sin}\:\alpha \\ $$$${the}\:{horizontal}\:{component}\:{of}\:{tension} \\ $$$${in}\:{the}\:{rope}\:{AB}\:{is} \\ $$$${T}_{\mathrm{0}} ={T}\:\mathrm{cos}\:\alpha={b}\rho{g}\:\mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha=\frac{{b}\rho{g}\:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{2}} \\ $$$$ \\ $$$${the}\:{equation}\:{of}\:{rope}\:{ACD}\:{in}\:{the} \\ $$$${coordinate}\:{system}\:{x}'{y}'\:{is}\:{a}\:{catenary} \\ $$$$\left({we}\:{use}\:{here}\:{u},{v}\:{instead}\:{ofx}',{y}'\:{to}\:{avoid}\right. \\ $$$$\left.{confusion}\right) \\ $$$${v}={a}\:\mathrm{cosh}\:\frac{{u}}{{a}}\:{with} \\ $$$${a}=\frac{{T}_{\mathrm{0}} }{\rho{g}}=\frac{{b}\rho{g}\:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{2}\rho{g}}=\frac{\mathrm{1}}{\mathrm{2}}{b}\:\mathrm{sin}\:\mathrm{2}\alpha \\ $$$$ \\ $$$${length}\:{of}\:{rope}\:{upon}\:{point}\:{C}\:{is} \\ $$$${s}={a}\:\mathrm{sinh}\:\frac{{u}}{{a}} \\ $$$$ \\ $$$${inclination}\:{of}\:{rope}\:{is} \\ $$$$\frac{{dv}}{{du}}=\mathrm{sinh}\:\frac{{u}}{{a}} \\ $$$$ \\ $$$${at}\:{point}\:{B}: \\ $$$$\mathrm{tan}\:\alpha=\frac{{dv}}{{du}}=\mathrm{sinh}\:\frac{{x}_{\mathrm{1}} }{{a}} \\ $$$$\Rightarrow{x}_{\mathrm{1}} ={a}\:\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha\right) \\ $$$$\Rightarrow{y}_{\mathrm{1}} ={a}\:\mathrm{cosh}\:\frac{{x}_{\mathrm{1}} }{{a}}={a}\:\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha\right)\right\} \\ $$$$ \\ $$$$\overset{\frown} {{CB}}={s}_{\mathrm{1}} ={a}\:\mathrm{sinh}\:\frac{{x}_{\mathrm{1}} }{{a}}={a}\:\mathrm{tan}\:\alpha \\ $$$$\overset{\frown} {{CA}}={s}_{\mathrm{2}} ={a}\:\mathrm{sinh}\:\frac{{x}_{\mathrm{2}} }{{a}} \\ $$$${s}_{\mathrm{2}} −{s}_{\mathrm{1}} =\overset{\frown} {{AB}}={l}−{b} \\ $$$${a}\:\mathrm{sinh}\:\frac{{x}_{\mathrm{2}} }{{a}}−{a}\:\mathrm{tan}\:\alpha={l}−{b} \\ $$$$\:\mathrm{sinh}\:\frac{{x}_{\mathrm{2}} }{{a}}=\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}} \\ $$$$\Rightarrow{x}_{\mathrm{2}} ={a}\:\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right) \\ $$$$\Rightarrow{y}_{\mathrm{2}} ={a}\:\mathrm{cosh}\:\frac{{x}_{\mathrm{2}} }{{a}}={a}\:\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)\right\} \\ $$$$ \\ $$$$\Rightarrow\Delta{H}={x}_{\mathrm{2}} −{x}_{\mathrm{1}} ={a}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)−\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha\right)\right\} \\ $$$$\Rightarrow\Delta{V}={y}_{\mathrm{2}} −{y}_{\mathrm{1}} ={a}\left[\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)\right\}−\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha\right)\right\}\right] \\ $$$$ \\ $$$${eqn}.\:{of}\:{rope}\:{AB}\:{in}\:{the}\:{requested} \\ $$$${coordinate}\:{system}\:{xy}: \\ $$$${u}={x}_{\mathrm{2}} −{y}={a}\:\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)−{y} \\ $$$${v}={y}_{\mathrm{2}} −{x}={a}\:\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)\right\}−{x} \\ $$$${putting}\:{this}\:{into}\:{v}={a}\:\mathrm{cosh}\:\frac{{u}}{{a}}\:{we}\:{can}\:{get} \\ $$$${following}\:{eqn}.\:{for}\:{rope}\:{curve}\:{AB}: \\ $$$${a}\:\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)\right\}−{x}={a}\:\mathrm{cosh}\:\frac{{a}\:\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)−{y}}{{a}} \\ $$$${or} \\ $$$$\frac{{x}}{{a}}=\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)\right\}−\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)−\frac{{y}}{{a}}\right\} \\ $$$${or} \\ $$$$\frac{{y}}{{a}}=\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)−\mathrm{cosh}^{−\mathrm{1}} \:\left[\mathrm{cosh}\:\left\{\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\alpha+\frac{{l}−{b}}{{a}}\right)\right\}−\frac{{x}}{{a}}\right] \\ $$$${with}\:{a}=\frac{\mathrm{1}}{\mathrm{2}}{b}\:\mathrm{sin}\:\mathrm{2}\alpha\:{and}\:{it}'{s}\:{valid} \\ $$$${for}\:\mathrm{0}\leqslant{x}\leqslant\Delta{V}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\Delta{H} \\ $$
Commented by MrW3 last updated on 06/Oct/18
Commented by MrW3 last updated on 06/Oct/18
Commented by ajfour last updated on 08/Oct/18
$${Thank}\:{you}\:{Sir},\:{please}\:{check}\:{my} \\ $$$${solution}\:{Sir},\:{if}\:{its}\:{correct}\:{it}\:{is} \\ $$$${simpler}.. \\ $$