Menu Close

Question-45128




Question Number 45128 by Necxx last updated on 09/Oct/18
Commented by Necxx last updated on 09/Oct/18
please help with the last question_
$${please}\:{help}\:{with}\:{the}\:{last}\:{question}_{} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Oct/18
∫(dx/(sinx(√(sinxcosx))))  ∫(dx/(sinx(√(((sinx)/(cosx))×cos^2 x))))  ∫((2dx)/(2sinxcosx.(√(tanx))))  2∫(((1+tan^2 x)dx)/(2tanx(√(tanx))))  t=tanx  dt=sec^2 xdx  ∫(dt/((t)^(3/2) ))  =(t^(−(3/2)+1) /((−1)/2))+c  =−2(t)^((−1)/2) +c  =((−2)/( (√t)))+c    =((−2)/( (√(tanx))))+c  answer  =−2(√(cotx)) +c
$$\int\frac{{dx}}{{sinx}\sqrt{{sinxcosx}}} \\ $$$$\int\frac{{dx}}{{sinx}\sqrt{\frac{{sinx}}{{cosx}}×{cos}^{\mathrm{2}} {x}}} \\ $$$$\int\frac{\mathrm{2}{dx}}{\mathrm{2}{sinxcosx}.\sqrt{{tanx}}} \\ $$$$\mathrm{2}\int\frac{\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right){dx}}{\mathrm{2}{tanx}\sqrt{{tanx}}} \\ $$$${t}={tanx}\:\:{dt}={sec}^{\mathrm{2}} {xdx} \\ $$$$\int\frac{{dt}}{\left({t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$=\frac{{t}^{−\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}} }{\frac{−\mathrm{1}}{\mathrm{2}}}+{c} \\ $$$$=−\mathrm{2}\left({t}\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} +{c} \\ $$$$=\frac{−\mathrm{2}}{\:\sqrt{{t}}}+{c}\:\:\:\:=\frac{−\mathrm{2}}{\:\sqrt{{tanx}}}+{c}\:\:{answer} \\ $$$$=−\mathrm{2}\sqrt{{cotx}}\:+{c} \\ $$
Commented by Necxx last updated on 09/Oct/18
wow....I love this..Thank you so  much_
$${wow}….{I}\:{love}\:{this}..{Thank}\:{you}\:{so} \\ $$$${much}_{} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *