Menu Close

Question-45165




Question Number 45165 by Tinkutara last updated on 09/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Oct/18
∫((sin5x(2cos((15x)/2).cos((3x)/2)))/(sin5x−sin10x))dx  ∫((2sin((5x)/2)cos((5x)/2)(2cos((15x)/2)cos((3x)/2)))/(−2cos((15x)/2).sin((5x)/2)))dx  =−∫2cos((5x)/2).cos((3x)/2)dx  =−∫cos4x+cosx   dx  =−(((sin4x)/4)+sinx)+c  k=4
$$\int\frac{{sin}\mathrm{5}{x}\left(\mathrm{2}{cos}\frac{\mathrm{15}{x}}{\mathrm{2}}.{cos}\frac{\mathrm{3}{x}}{\mathrm{2}}\right)}{{sin}\mathrm{5}{x}−{sin}\mathrm{10}{x}}{dx} \\ $$$$\int\frac{\mathrm{2}{sin}\frac{\mathrm{5}{x}}{\mathrm{2}}{cos}\frac{\mathrm{5}{x}}{\mathrm{2}}\left(\mathrm{2}{cos}\frac{\mathrm{15}{x}}{\mathrm{2}}{cos}\frac{\mathrm{3}{x}}{\mathrm{2}}\right)}{−\mathrm{2}{cos}\frac{\mathrm{15}{x}}{\mathrm{2}}.{sin}\frac{\mathrm{5}{x}}{\mathrm{2}}}{dx} \\ $$$$=−\int\mathrm{2}{cos}\frac{\mathrm{5}{x}}{\mathrm{2}}.{cos}\frac{\mathrm{3}{x}}{\mathrm{2}}{dx} \\ $$$$=−\int{cos}\mathrm{4}{x}+{cosx}\:\:\:{dx} \\ $$$$=−\left(\frac{{sin}\mathrm{4}{x}}{\mathrm{4}}+{sinx}\right)+{c} \\ $$$${k}=\mathrm{4} \\ $$$$ \\ $$
Commented by Tinkutara last updated on 10/Oct/18
Thank you very much Sir! I got the answer. ��������
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
most welcome...
$${most}\:{welcome}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *