Question Number 45327 by Necxx last updated on 12/Oct/18
Answered by rahul 19 last updated on 12/Oct/18
$${x}=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}+\frac{\mathrm{1}}{\mathrm{1}+{x}}} \\ $$$$\Rightarrow{x}=\mathrm{1}+\frac{\mathrm{1}+{x}}{\mathrm{4}+\mathrm{3}{x}} \\ $$$$\Rightarrow\mathrm{4}{x}+\mathrm{3}{x}^{\mathrm{2}} =\mathrm{5}+\mathrm{4}{x} \\ $$$$\Rightarrow{x}=\:\underset{−} {+}\sqrt{\frac{\mathrm{5}}{\mathrm{3}}.}\:\Rightarrow\:\left({d}\right). \\ $$
Commented by Necxx last updated on 12/Oct/18
$${thanks}\:{boss} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
$$\frac{\mathrm{1}}{{x}−\mathrm{1}}=\mathrm{3}+\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}+\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}+\frac{\mathrm{1}}{\mathrm{2}…\infty}}}}} \\ $$$${k}=\mathrm{3}+\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{1}}{{k}}}\:\:\:\:\:\:\:{let}\:{k}=\frac{\mathrm{1}}{{x}−\mathrm{1}} \\ $$$${k}=\mathrm{3}+\frac{{k}}{\mathrm{2}{k}+\mathrm{1}} \\ $$$${k}\left(\mathrm{2}{k}+\mathrm{1}\right)=\mathrm{6}{k}+\mathrm{3}+{k} \\ $$$$\mathrm{2}{k}^{\mathrm{2}} +{k}−\mathrm{7}{k}−\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{2}{k}^{\mathrm{2}} −\mathrm{6}{k}−\mathrm{3}=\mathrm{0} \\ $$$$\frac{\mathrm{2}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{6}}{{x}−\mathrm{1}}−\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{2}−\mathrm{6}\left({x}−\mathrm{1}\right)−\mathrm{3}\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$−\mathrm{3}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{3}+\mathrm{2}−\mathrm{6}{x}+\mathrm{6}=\mathrm{0} \\ $$$$−\mathrm{3}{x}^{\mathrm{2}} =−\mathrm{5} \\ $$$${x}=\pm\sqrt{\frac{\mathrm{5}}{\mathrm{3}}} \\ $$
Commented by Necxx last updated on 12/Oct/18
$${thanks}\:{boss} \\ $$