Menu Close

Question-45346




Question Number 45346 by Tawa1 last updated on 12/Oct/18
Commented by Meritguide1234 last updated on 12/Oct/18
this is my old post 45204
$${this}\:{is}\:{my}\:{old}\:{post}\:\mathrm{45204} \\ $$
Commented by Tawa1 last updated on 12/Oct/18
What is the solution
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
=Σ_(r=1) ^(99) ((√(10+(√r) ))/( (√(10−(√r) ))))            (√(10+(√(99))))    >  (√(10+(√1)))     >(√(10+(√1)))             (√(10+(√(99))))    >  (√(10+(√2)))    >(√(10+(√1)))             (√(10+(√(99))))    >(√(10+(√3) ))      >(√(10+(√1)))     ...........       ...........   adding them                     99×(√(10+(√(99))))   >N_r    >99×(√(11))   x=10+(√(99))   2x=20+2×(√(11)) ×3  2x=((√(11)) +3)^2   x=(1/2)((√(11))  +3)^2   (√x) =((3+(√(11)))/( (√2))) =((3/( (√2)))+(√((11)/2)) )            99×((3/( (√2)))+(√((11)/2)) )>N_r >99(√(11))   it is logic based justification...microsoft   Excell can give the answer of the problem              (√(10−(√(99))))  <(√(10−(√1)))  <(√(10−(√1)))              (√(10−(√(99))))  <(√(10−(√2)))  <(√(10−(√1)))              (√(10−(√(99))))  <(√(10−(√3)))   <(√(10−(√1)))            ........          ........    add them                   99×(√(10−(√(99))))  <D_r <99×3                  99×((√((11)/2)) −(3/( (√2))))<D_r <99×3
$$=\underset{{r}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\frac{\sqrt{\mathrm{10}+\sqrt{{r}}\:}}{\:\sqrt{\mathrm{10}−\sqrt{{r}}\:}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{10}+\sqrt{\mathrm{99}}}\:\:\:\:>\:\:\sqrt{\mathrm{10}+\sqrt{\mathrm{1}}}\:\:\:\:\:>\sqrt{\mathrm{10}+\sqrt{\mathrm{1}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{10}+\sqrt{\mathrm{99}}}\:\:\:\:>\:\:\sqrt{\mathrm{10}+\sqrt{\mathrm{2}}}\:\:\:\:>\sqrt{\mathrm{10}+\sqrt{\mathrm{1}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{10}+\sqrt{\mathrm{99}}}\:\:\:\:>\sqrt{\mathrm{10}+\sqrt{\mathrm{3}}\:}\:\:\:\:\:\:>\sqrt{\mathrm{10}+\sqrt{\mathrm{1}}} \\ $$$$\:\:\:……….. \\ $$$$\:\:\:\:\:………..\:\:\:{adding}\:{them} \\ $$$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{99}×\sqrt{\mathrm{10}+\sqrt{\mathrm{99}}}\:\:\:>{N}_{{r}} \:\:\:>\mathrm{99}×\sqrt{\mathrm{11}}\: \\ $$$${x}=\mathrm{10}+\sqrt{\mathrm{99}}\: \\ $$$$\mathrm{2}{x}=\mathrm{20}+\mathrm{2}×\sqrt{\mathrm{11}}\:×\mathrm{3} \\ $$$$\mathrm{2}{x}=\left(\sqrt{\mathrm{11}}\:+\mathrm{3}\right)^{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{11}}\:\:+\mathrm{3}\right)^{\mathrm{2}} \\ $$$$\sqrt{{x}}\:=\frac{\mathrm{3}+\sqrt{\mathrm{11}}}{\:\sqrt{\mathrm{2}}}\:=\left(\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}+\sqrt{\frac{\mathrm{11}}{\mathrm{2}}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{99}×\left(\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}+\sqrt{\frac{\mathrm{11}}{\mathrm{2}}}\:\right)>{N}_{{r}} >\mathrm{99}\sqrt{\mathrm{11}}\: \\ $$$${it}\:{is}\:{logic}\:{based}\:{justification}…{microsoft}\: \\ $$$${Excell}\:{can}\:{give}\:{the}\:{answer}\:{of}\:{the}\:{problem} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{10}−\sqrt{\mathrm{99}}}\:\:<\sqrt{\mathrm{10}−\sqrt{\mathrm{1}}}\:\:<\sqrt{\mathrm{10}−\sqrt{\mathrm{1}}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{10}−\sqrt{\mathrm{99}}}\:\:<\sqrt{\mathrm{10}−\sqrt{\mathrm{2}}}\:\:<\sqrt{\mathrm{10}−\sqrt{\mathrm{1}}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{10}−\sqrt{\mathrm{99}}}\:\:<\sqrt{\mathrm{10}−\sqrt{\mathrm{3}}}\:\:\:<\sqrt{\mathrm{10}−\sqrt{\mathrm{1}}}\: \\ $$$$\:\:\:\:\:\:\:\:\:…….. \\ $$$$\:\:\:\:\:\:\:\:……..\:\:\:\:{add}\:{them}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{99}×\sqrt{\mathrm{10}−\sqrt{\mathrm{99}}}\:\:<{D}_{{r}} <\mathrm{99}×\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{99}×\left(\sqrt{\frac{\mathrm{11}}{\mathrm{2}}}\:−\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}\right)<{D}_{{r}} <\mathrm{99}×\mathrm{3} \\ $$
Commented by Tawa1 last updated on 12/Oct/18
God bless you sir.  What is the final answer.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{final}\:\mathrm{answer}. \\ $$
Commented by Meritguide1234 last updated on 12/Oct/18
ans is (√2)+1
$${ans}\:{is}\:\sqrt{\mathrm{2}}+\mathrm{1} \\ $$
Commented by Meritguide1234 last updated on 12/Oct/18
Commented by Tawa1 last updated on 12/Oct/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *