Question Number 45352 by Meritguide1234 last updated on 12/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
$${x}−{y}=\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} } \\ $$$${y}\left(\frac{{x}}{{y}}−\mathrm{1}\right)=\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }\:\:\:\:\:\:\:{t}=\frac{{x}}{{y}} \\ $$$${y}\left({t}−\mathrm{1}\right)={t}^{\mathrm{2}} \\ $$$$\frac{{x}}{{t}}\left({t}−\mathrm{1}\right)={t}^{\mathrm{2}} \\ $$$${x}=\frac{{t}^{\mathrm{3}} }{{t}−\mathrm{1}}\:\:\:\:\:{y}=\frac{{x}}{{t}}=\frac{{t}^{\mathrm{2}} }{{t}−\mathrm{1}} \\ $$$${dx}=\frac{\left({t}−\mathrm{1}\right)\left(\mathrm{3}{t}^{\mathrm{2}} \right)−{t}^{\mathrm{3}} \left(\mathrm{1}\right)}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$${dx}=\frac{\mathrm{3}{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} −{t}^{\mathrm{3}} }{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\int\frac{{dx}}{\mathrm{3}{y}−\mathrm{2}{x}} \\ $$$$=\int\frac{\left(\mathrm{2}{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} \right)}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} \left(\frac{\mathrm{3}{t}^{\mathrm{2}} }{{t}−\mathrm{1}}−\frac{\mathrm{2}{t}^{\mathrm{3}} }{{t}−\mathrm{1}}\right)}{dt} \\ $$$$\int\frac{\left({t}−\mathrm{1}\right)\left(\mathrm{2}{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} \right)}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} ×−\left(\mathrm{2}{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} \right)}{dt} \\ $$$$=−\mathrm{1}\int\frac{{dt}}{{t}−\mathrm{1}} \\ $$$$=−{ln}\left({t}−\mathrm{1}\right)+{c} \\ $$$$=−{ln}\left(\frac{{x}}{{y}}−\mathrm{1}\right)+{c} \\ $$$$=−{ln}\left({x}−{y}\right)+{lny}+{c} \\ $$$$={ln}\left(\frac{{y}}{{x}−{y}}\right)+{c}\:\:\:{pls}\:{check}… \\ $$$$ \\ $$$$ \\ $$
Commented by Meritguide1234 last updated on 12/Oct/18
$${yes}\:{correct}…{my}\:{r}.{h}.{s}\:{should}\:{be}\:\left({x}−{y}\right)\:{in}\:{denominator}. \\ $$