Question Number 45630 by ajfour last updated on 14/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Oct/18

Commented by ajfour last updated on 15/Oct/18

Answered by MrW3 last updated on 15/Oct/18
![(√((x+r)^2 −x^2 ))+(√((R+x)^2 −x^2 ))=l (√(r(2x+r)))+(√(R(2x+R)))=l r(2x+r)+R(2x+R)+2(√(rR(2x+r)(2x+R)))=l^2 2(√(rR(2x+r)(2x+R)))=(l^2 −R^2 −r^2 )−2(R+r)x let 2e^2 =l^2 −R^2 −r^2 or e=(√((l^2 −R^2 −r^2 )/2)) ⇒(√(rR(2x+r)(2x+R)))=e^2 −(R+r)x rR(2x+r)(2x+R)=e^4 +(R+r)^2 x^2 −2e^2 (R+r)x rR{4x^2 +2(R+r)x+Rr}=e^4 +(R+r)^2 x^2 −2e^2 (R+r)x 4Rrx^2 +2Rr(R+r)x+R^2 r^2 =e^4 +(R+r)^2 x^2 −2e^2 (R+r)x {(R+r)^2 −4Rr}x^2 −2(R+r)(e^2 +Rr)x−(R^2 r^2 −e^4 )=0 (R−r)^2 x^2 −2(R+r)(e^2 +Rr)x−(R^2 r^2 −e^4 )=0 for R=r: ⇒x=((e^4 −R^4 )/(4R(e^2 +R^2 )))=((e^2 −R^2 )/(4R))=((l^2 −4R^2 )/(8R)) for R≠r: ⇒x=((2(R+r)(e^2 +Rr)−2(√((R+r)^2 (e^2 +Rr)^2 +(R−r)^2 (R^2 r^2 −e^4 ))))/((R−r)^2 )) ⇒x=(((R+r)(2e^2 +2Rr)−2(√(Rr(2e^2 +2Rr)(R^2 +r^2 +2e^2 ))))/(2(R−r)^2 )) ⇒x=(((R+r)[l^2 −(R−r)^2 ]−2l(√(Rr[l^2 −(R−r)^2 ])))/(2(R−r)^2 ))](https://www.tinkutara.com/question/Q45643.png)
Commented by ajfour last updated on 15/Oct/18
