Menu Close

Question-45630




Question Number 45630 by ajfour last updated on 14/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Oct/18
(1/2)×l×x=(√(s(s−a)(s−b)(s−c)))   s=((R+x+x+r+l)/2)=x+((R+r+l)/2)  a=R+x    b=x+r    c=l  (1/2)lx=(√((x+((R+r+l)/2))(((r+l+R)/2)−R)(((R+l+r)/2)−r)(x+((R+r+l)/2)−l)))   ((l^2 x^2 )/4)=(x+M)(N)(P)(x+Q)                             ↑here i forgot to putx  l^2 x^2 =4(x+M)NP(x+Q)  M=((R+r+l)/2)  N=(((R+r+l)/2)−R)  P=(((R+r+l)/2)−r)   Q=((R+r+l)/2)−l  (x^2 /((x+M)(x+Q)))=((4NP)/l^2 )  nw put  M,  N,  P,   Q value  (x^2 /((x+M)(x+Q)))=T  x^2 =T(x^2 +Qx+Mx+MQ)  x^2 (T−1)+x(Q+M)+MQT=0  x=((−(Q+M)+(√((Q+M)^2 −4(T−1)(MQT))))/(2(T−1)))
12×l×x=s(sa)(sb)(sc)s=R+x+x+r+l2=x+R+r+l2a=R+xb=x+rc=l12lx=(x+R+r+l2)(r+l+R2R)(R+l+r2r)(x+R+r+l2l)l2x24=(x+M)(N)(P)(x+Q)hereiforgottoputxl2x2=4(x+M)NP(x+Q)M=R+r+l2N=(R+r+l2R)P=(R+r+l2r)Q=R+r+l2lx2(x+M)(x+Q)=4NPl2nwputM,N,P,Qvaluex2(x+M)(x+Q)=Tx2=T(x2+Qx+Mx+MQ)x2(T1)+x(Q+M)+MQT=0x=(Q+M)+(Q+M)24(T1)(MQT)2(T1)
Commented by ajfour last updated on 15/Oct/18
thanks, Tanmay Sir.
thanks,TanmaySir.
Answered by MrW3 last updated on 15/Oct/18
(√((x+r)^2 −x^2 ))+(√((R+x)^2 −x^2 ))=l  (√(r(2x+r)))+(√(R(2x+R)))=l  r(2x+r)+R(2x+R)+2(√(rR(2x+r)(2x+R)))=l^2   2(√(rR(2x+r)(2x+R)))=(l^2 −R^2 −r^2 )−2(R+r)x  let 2e^2 =l^2 −R^2 −r^2  or e=(√((l^2 −R^2 −r^2 )/2))  ⇒(√(rR(2x+r)(2x+R)))=e^2 −(R+r)x  rR(2x+r)(2x+R)=e^4 +(R+r)^2 x^2 −2e^2 (R+r)x  rR{4x^2 +2(R+r)x+Rr}=e^4 +(R+r)^2 x^2 −2e^2 (R+r)x  4Rrx^2 +2Rr(R+r)x+R^2 r^2 =e^4 +(R+r)^2 x^2 −2e^2 (R+r)x  {(R+r)^2 −4Rr}x^2 −2(R+r)(e^2 +Rr)x−(R^2 r^2 −e^4 )=0  (R−r)^2 x^2 −2(R+r)(e^2 +Rr)x−(R^2 r^2 −e^4 )=0  for R=r:  ⇒x=((e^4 −R^4 )/(4R(e^2 +R^2 )))=((e^2 −R^2 )/(4R))=((l^2 −4R^2 )/(8R))  for R≠r:  ⇒x=((2(R+r)(e^2 +Rr)−2(√((R+r)^2 (e^2 +Rr)^2 +(R−r)^2 (R^2 r^2 −e^4 ))))/((R−r)^2 ))  ⇒x=(((R+r)(2e^2 +2Rr)−2(√(Rr(2e^2 +2Rr)(R^2 +r^2 +2e^2 ))))/(2(R−r)^2 ))  ⇒x=(((R+r)[l^2 −(R−r)^2 ]−2l(√(Rr[l^2 −(R−r)^2 ])))/(2(R−r)^2 ))
(x+r)2x2+(R+x)2x2=lr(2x+r)+R(2x+R)=lr(2x+r)+R(2x+R)+2rR(2x+r)(2x+R)=l22rR(2x+r)(2x+R)=(l2R2r2)2(R+r)xlet2e2=l2R2r2ore=l2R2r22rR(2x+r)(2x+R)=e2(R+r)xrR(2x+r)(2x+R)=e4+(R+r)2x22e2(R+r)xrR{4x2+2(R+r)x+Rr}=e4+(R+r)2x22e2(R+r)x4Rrx2+2Rr(R+r)x+R2r2=e4+(R+r)2x22e2(R+r)x{(R+r)24Rr}x22(R+r)(e2+Rr)x(R2r2e4)=0(Rr)2x22(R+r)(e2+Rr)x(R2r2e4)=0forR=r:x=e4R44R(e2+R2)=e2R24R=l24R28RforRr:x=2(R+r)(e2+Rr)2(R+r)2(e2+Rr)2+(Rr)2(R2r2e4)(Rr)2x=(R+r)(2e2+2Rr)2Rr(2e2+2Rr)(R2+r2+2e2)2(Rr)2x=(R+r)[l2(Rr)2]2lRr[l2(Rr)2]2(Rr)2
Commented by ajfour last updated on 15/Oct/18
thank you Sir!
thankyouSir!

Leave a Reply

Your email address will not be published. Required fields are marked *