Menu Close

Question-45785




Question Number 45785 by Tawa1 last updated on 16/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Oct/18
let centre of circle is (α,β) and radius r  so eqn of circle (x−α)^2 +(y−β)^2 =r^2   now as per condition  1)x axis is[the tangent of circle so distance  from cente to[ x sxis  is the radius.  distance from centre(α,β) to xaxis is β=radius  β=r   so eqn is (x−α)^2 +(y−β)^2 =β^2   2)centre lies on 2y=x  2β=α  3)(14,2) liez on circle so   (14−α)^2 +(2−β)^2 =β^2   (14−2β)^2 +(2−β)^2 =β^2     given α=2β  196−56β+4β^2 +4−4β+β^2 =β^2   4β^2 −60β+200=0  β^2 −15β+50=0  (β−5)(β−10)=0  β=5  α=10  eqn (x−10)^2 +(y−5)^2 =5^2   when β=10 α=20  eqn (x−20)^2 +(y−10)^2 =10^2
letcentreofcircleis(α,β)andradiusrsoeqnofcircle(xα)2+(yβ)2=r2nowaspercondition1)xaxisis[thetangentofcirclesodistancefromcenteto[xsxisistheradius.distancefromcentre(α,β)toxaxisisβ=radiusβ=rsoeqnis(xα)2+(yβ)2=β22)centrelieson2y=x2β=α3)(14,2)liezoncircleso(14α)2+(2β)2=β2(142β)2+(2β)2=β2givenα=2β19656β+4β2+44β+β2=β24β260β+200=0β215β+50=0(β5)(β10)=0β=5α=10eqn(x10)2+(y5)2=52whenβ=10α=20eqn(x20)2+(y10)2=102
Commented by Tawa1 last updated on 16/Oct/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *