Question Number 45885 by Meritguide1234 last updated on 17/Oct/18
Commented by maxmathsup by imad last updated on 18/Oct/18
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{n}\left(\mathrm{1}−\left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \right){dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{f}_{{n}} \left({x}\right){dx}\:{with}\:{f}_{{n}} \left({x}\right)={n}\left(\mathrm{1}−\left({sinx}^{\frac{\mathrm{1}}{{n}}} \right)\right) \\ $$$${but}\:{we}\:{have}\:\:\left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \:={e}^{\frac{\mathrm{1}}{{n}}{ln}\left({sinx}\right)} =\mathrm{1}+\frac{{ln}\left({sinx}\right)}{{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow \\ $$$$\mathrm{1}−{e}^{\frac{\mathrm{1}}{{n}}{ln}\left({sinx}\right)} =−\frac{{ln}\left({sinx}\right)}{{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{n}\left(\mathrm{1}−{e}^{\frac{{ln}\left({sinx}\right)}{{n}}} \right)=−{ln}\left({sinx}\right)\:+{o}\left(\mathrm{1}\right)\:\Rightarrow \\ $$$${f}_{{n}} \left({x}\right)=−{ln}\left({sinx}\right)+{o}\left(\mathrm{1}\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −{ln}\left({sinx}\right){dx} \\ $$$$=−\left(−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\right)=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right). \\ $$
Commented by Meritguide1234 last updated on 19/Oct/18
$${nice}\:{approach} \\ $$
Commented by maxmathsup by imad last updated on 20/Oct/18
$${thank}\:{you}\:{sir}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Oct/18
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left\{\mathrm{1}−\left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \right\}{dx} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\left[\mid{x}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} {xcoz}^{\mathrm{2}{q}−\mathrm{1}} {x}\:{dx}\right] \\ $$$${here}\:\mathrm{2}{p}−\mathrm{1}=\frac{\mathrm{1}}{{n}}\:\:\:\:\:\mathrm{2}{p}=\mathrm{1}+\frac{\mathrm{1}}{{n}}\:\:\:\:{p}=\frac{{n}+\mathrm{1}}{\mathrm{2}{n}} \\ $$$$\:\:\mathrm{2}{q}−\mathrm{1}=\mathrm{0}\:\:\:\:{q}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:{using}\:{gamma}\:{beta}\:{function} \\ $$$${formula}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} {xcos}^{\mathrm{2}{a}−\mathrm{1}} {xdx}=\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\mathrm{2}\lceil\left({p}+{q}\right)} \\ $$$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\left[\frac{\pi}{\mathrm{2}}−\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\mathrm{2}\lceil\left({p}+{q}\right)}\right] \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\left[\frac{\pi}{\mathrm{2}}−\frac{\lceil\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\right)\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\lceil\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}\right] \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\left[\frac{\pi}{\mathrm{2}}−\frac{\lceil\left(\mathrm{1}+\frac{\mathrm{1}−{n}}{\mathrm{2}{n}}\right)×\sqrt{\pi}}{\mathrm{2}\lceil\left(\mathrm{1}+\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}}\right)}\:\:\:\right] \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\left[\frac{\pi}{\mathrm{2}}−\frac{\sqrt{\pi}\:×\lceil\left(\mathrm{1}+\frac{\mathrm{1}−{n}}{\mathrm{2}{n}}\right)}{\mathrm{2}\lceil\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)}\right] \\ $$
Commented by Meritguide1234 last updated on 18/Oct/18
$${not}\:{correct} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 18/Oct/18
$${yes}\:{i}\:{know}\:{the}\:{result}\:{is}\:{yet}\:{to}\:{come}\:…{when}\:{n}\rightarrow\infty \\ $$$${the}\:{results}\:{is}\:\infty \\ $$
Commented by Meritguide1234 last updated on 18/Oct/18
$${put}\:{n}=\mathrm{1}/{t}…{then}\:{ans}\:{is}\:\left(\frac{\pi}{\mathrm{2}}{ln}\mathrm{2}\right) \\ $$