Question Number 45885 by Meritguide1234 last updated on 17/Oct/18

Commented by maxmathsup by imad last updated on 18/Oct/18

Commented by Meritguide1234 last updated on 19/Oct/18

Commented by maxmathsup by imad last updated on 20/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Oct/18
![lim_(n→∞) n∫_0 ^(π/2) {1−(sinx)^(1/n) }dx lim_(n→∞) n[∣x∣_0 ^(π/2) −∫_0 ^(π/2) sin^(2p−1) xcoz^(2q−1) x dx] here 2p−1=(1/n) 2p=1+(1/n) p=((n+1)/(2n)) 2q−1=0 q=(1/2) using gamma beta function formula ∫_0 ^(π/2) sin^(2p−1) xcos^(2a−1) xdx=((⌈(p)⌈(q))/(2⌈(p+q))) lim_(n→∞) n[(π/2)−((⌈(p)⌈(q))/(2⌈(p+q)))] lim_(n→∞) n[(π/2)−((⌈(((n+1)/(2n)))⌈((1/2)))/(2⌈(((n+1)/(2n))+(1/2))))] lim_(n→∞) n[(π/2)−((⌈(1+((1−n)/(2n)))×(√π))/(2⌈(1+((n+1)/(2n))−(1/2)))) ] lim_(n→∞) n[(π/2)−(((√π) ×⌈(1+((1−n)/(2n))))/(2⌈(1+(1/(2n)))))]](https://www.tinkutara.com/question/Q45891.png)
Commented by Meritguide1234 last updated on 18/Oct/18

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Oct/18

Commented by Meritguide1234 last updated on 18/Oct/18
