Menu Close

Question-46083




Question Number 46083 by peter frank last updated on 20/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18
α^7 =1  α^7 −1=0  (α−1)(α^6 +α^5 +α^4 +α^3 +α^2 +α+1)=0    when A×B=0  either A=0 or B=0  hence α^6 +α^5 +α^4 +α^3 +α^2 +α+1=0
$$\alpha^{\mathrm{7}} =\mathrm{1} \\ $$$$\alpha^{\mathrm{7}} −\mathrm{1}=\mathrm{0} \\ $$$$\left(\alpha−\mathrm{1}\right)\left(\alpha^{\mathrm{6}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{4}} +\alpha^{\mathrm{3}} +\alpha^{\mathrm{2}} +\alpha+\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$${when}\:{A}×{B}=\mathrm{0} \\ $$$${either}\:{A}=\mathrm{0}\:{or}\:{B}=\mathrm{0} \\ $$$${hence}\:\alpha^{\mathrm{6}} +\alpha^{\mathrm{5}} +\alpha^{\mathrm{4}} +\alpha^{\mathrm{3}} +\alpha^{\mathrm{2}} +\alpha+\mathrm{1}=\mathrm{0} \\ $$
Commented by peter frank last updated on 21/Oct/18
thanks
$$\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *