Question Number 46088 by Cheyboy last updated on 21/Oct/18
Answered by $@ty@m last updated on 21/Oct/18
$${Let}\:{Solution}\:{set}\:=\begin{bmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{bmatrix} \\ $$$${a}+{b}=\mathrm{8}\:…\left(\mathrm{1}\right) \\ $$$${b}+{d}=\mathrm{8}\:…\left(\mathrm{2}\right) \\ $$$$\Rightarrow{a}={d}\:…\left(\mathrm{3}\right) \\ $$$${c}−{d}=\mathrm{6}\:…\left(\mathrm{4}\right) \\ $$$${a}+{c}=\mathrm{13}\:…\left(\mathrm{5}\right) \\ $$$$\left(\mathrm{3}\right)\&\left(\mathrm{5}\right)\Rightarrow{c}+{d}=\mathrm{13}\:…\left(\mathrm{6}\right) \\ $$$$\left(\mathrm{4}\right)\:\&\:\left(\mathrm{6}\right)\Rightarrow{c}=\mathrm{9}.\mathrm{5} \\ $$$$\Rightarrow{d}=\mathrm{3}.\mathrm{5} \\ $$$$\Rightarrow{a}=\mathrm{3}.\mathrm{5} \\ $$$$\Rightarrow{b}=\mathrm{4}.\mathrm{5} \\ $$$$\therefore\:{Solution}\:{set}\:\begin{bmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{bmatrix}=\begin{bmatrix}{\mathrm{3}.\mathrm{5}}&{\mathrm{4}.\mathrm{5}}\\{\mathrm{9}.\mathrm{5}}&{\mathrm{3}.\mathrm{5}}\end{bmatrix} \\ $$
Commented by Cheyboy last updated on 21/Oct/18
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$$$ \\ $$$$ \\ $$