Menu Close

Question-46129




Question Number 46129 by Necxx last updated on 21/Oct/18
Commented by Meritguide1234 last updated on 21/Oct/18
put x=tanθ  ∫_0 ^(π/4) log(1+tanθ)dθ  use f(a−x)→f(x)  I=(π/8)log2
$${put}\:{x}={tan}\theta \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} {log}\left(\mathrm{1}+{tan}\theta\right){d}\theta \\ $$$${use}\:{f}\left({a}−{x}\right)\rightarrow{f}\left({x}\right) \\ $$$${I}=\frac{\pi}{\mathrm{8}}{log}\mathrm{2} \\ $$
Commented by maxmathsup by imad last updated on 21/Oct/18
changement x=tanθ give I = ∫_0 ^(π/4)    ((ln(1+tanθ))/(1+tan^2 θ)) (1+tan^2 θ)dθ  =∫_0 ^(π/4) ln(((cosθ +sinθ)/(cosθ)))dθ =∫_0 ^(π/4) ln((√2)cos(θ−(π/4)))dθ −∫_0 ^(π/4) ln(cosθ)dθ  =(π/8)ln(2) + ∫_0 ^(π/4) cos(θ−(π/4))dθ−∫_0 ^(π/4) ln(cosθ)dθ but  ∫_0 ^(π/4) cos(θ−(π/4))dθ =∫_0 ^(π/4) cos((π/4) −θ)dθ =_((π/4)−θ=u)  ∫_(π/4) ^0 cos(u)(−du)  =∫_0 ^(π/4) cos(u)du ⇒★ ∫_0 ^1    ((ln(1+x))/(1+x^2 ))dx =(π/8)ln(2) ★
$${changement}\:{x}={tan}\theta\:{give}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{ln}\left(\mathrm{1}+{tan}\theta\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{{cos}\theta\:+{sin}\theta}{{cos}\theta}\right){d}\theta\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\sqrt{\mathrm{2}}{cos}\left(\theta−\frac{\pi}{\mathrm{4}}\right)\right){d}\theta\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\theta\right){d}\theta \\ $$$$=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:+\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cos}\left(\theta−\frac{\pi}{\mathrm{4}}\right){d}\theta−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\theta\right){d}\theta\:{but} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cos}\left(\theta−\frac{\pi}{\mathrm{4}}\right){d}\theta\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cos}\left(\frac{\pi}{\mathrm{4}}\:−\theta\right){d}\theta\:=_{\frac{\pi}{\mathrm{4}}−\theta={u}} \:\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} {cos}\left({u}\right)\left(−{du}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cos}\left({u}\right){du}\:\Rightarrow\bigstar\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:\bigstar \\ $$
Commented by Necxx last updated on 22/Oct/18
thank you so much
$${thank}\:{you}\:{so}\:{much} \\ $$
Commented by Necxx last updated on 22/Oct/18
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *