Question Number 46180 by ajfour last updated on 22/Oct/18
Commented by ajfour last updated on 22/Oct/18
$${If}\:{the}\:{stick}\:{is}\:{released}\:{in}\:{the} \\ $$$${position}\:{as}\:{shown}\:{in}\:{diagram}, \\ $$$${end}\:{A}\:\:{slides}\:{on}\:{yz}\:{wall}\:{then} \\ $$$${loses}\:{contact}\:{with}\:{it}\:{at}\:{P}.\:{Find} \\ $$$${coordinates}\:{of}\:{P}.\:{Assume}\:{all} \\ $$$${surfaces}\:{frictionless}. \\ $$
Commented by ajfour last updated on 22/Oct/18
Commented by ajfour last updated on 22/Oct/18
$${Let}\:\:\:\:{A}\left(\mathrm{0},{y},{z}\right)\:\:;\:\:{B}\left({x},\mathrm{0},\mathrm{0}\right) \\ $$$${N}_{\mathrm{1}} =\:{m}\frac{{d}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}{{dt}^{\mathrm{2}} }\:=\:\frac{{ma}_{\mathrm{1}} }{\mathrm{2}}\:\:\:\:\:\:….\left({i}\right) \\ $$$${N}_{\mathrm{2}} =\:\frac{{ma}_{\mathrm{2}} }{\mathrm{2}}\:\:;\:{N}_{\mathrm{3}} −{mg}\:=\:\frac{{ma}_{\mathrm{3}} }{\mathrm{2}}\:\:…\:\left({ii}\right)\&\left({iii}\right) \\ $$$$\:\:\:\:{x}=\:{l}\mathrm{cos}\:\theta\mathrm{cos}\:\phi\:; \\ $$$$\:\:\:\:{y}=\:{l}\mathrm{cos}\:\theta\mathrm{sin}\:\phi\:\:;\:\:{z}\:=\:{l}\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\left({iv}\right),\left({v}\right),\left({vi}\right) \\ $$$$\:\:\left({N}_{\mathrm{1}} \mathrm{sin}\:\phi−{N}_{\mathrm{2}} \mathrm{cos}\:\phi\right)\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\frac{{d}}{{dt}}\left(\frac{{ml}^{\mathrm{2}} \omega_{\phi} \mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{12}}\right)\:\:\:\:….\left({vii}\right) \\ $$$$\left({N}_{\mathrm{1}} \mathrm{cos}\:\phi+{N}_{\mathrm{2}} \mathrm{sin}\:\phi\right)\frac{{l}}{\mathrm{2}}\mathrm{sin}\:\theta \\ $$$$\:\:−{N}_{\mathrm{3}} \left(\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta\right)=\:\left(\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}\right)\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }\:\:\:\:\:..\left({viii}\right) \\ $$$${unknowns}\:\:{N}_{\mathrm{1}} ,\:{N}_{\mathrm{2}} ,\:{N}_{\mathrm{3}} ,\:{x},\:{y},\:{z}, \\ $$$$\:\:\:\theta,\:\phi\:. \\ $$