Question Number 46299 by rahul 19 last updated on 23/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Oct/18
$${area}\:{remaining}\:{portion}=\pi{R}^{\mathrm{2}} −\pi\left(\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$=\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{9}}\right)=\frac{\mathrm{8}\pi{R}^{\mathrm{2}} }{\mathrm{9}} \\ $$$${mass}\:{per}\:{unit}\:{area}\left(\rho\right)=\frac{{M}}{\frac{\mathrm{8}\pi{R}^{\mathrm{2}} }{\mathrm{9}}}=\frac{\mathrm{9}{M}}{\mathrm{8}\pi{R}^{\mathrm{2}} } \\ $$$${so}\:{mass}\:{for}\:{cut}\:{disc}=\pi\frac{{R}^{\mathrm{2}} }{\mathrm{9}}×\frac{\mathrm{9}{M}}{\mathrm{8}\pi{R}^{\mathrm{2}} }=\frac{{M}}{\mathrm{8}} \\ $$$${mass}\:{of}\:{uncut}\:{complete}\:{disc}={M}+\frac{{M}}{\mathrm{8}}=\frac{\mathrm{9}{M}}{\mathrm{8}} \\ $$$${moment}\:{of}\:{inertia}\:{of}\:{uncut}\:{complete}\:{disc}\: \\ $$$${about}\:{the}\:{axis}\:\bot\:{to}\:{the}\:{plane}\:{of}\:{disc}\:{tbrough} \\ $$$${centre} \\ $$$$=\frac{\mathrm{9}{M}}{\mathrm{8}}×\frac{{R}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{9}{MR}^{\mathrm{2}} }{\mathrm{16}} \\ $$$$\frac{\mathrm{9}{MR}^{\mathrm{2}} }{\mathrm{16}}\leftarrow{I}_{{o}} \\ $$$${momeng}\:{of}\:{inertia}\:{cut}\:{small}\:{disc}\:{about} \\ $$$${mentioned}\:{axix}\:=\frac{{M}}{\mathrm{8}}×\left({R}−\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} +\frac{{M}}{\mathrm{8}}×\left(\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{{M}}{\mathrm{8}}×\frac{\mathrm{4}{R}^{\mathrm{2}} }{\mathrm{9}}+\frac{{M}}{\mathrm{8}}×\frac{{R}^{\mathrm{2}} }{\mathrm{18}}=\frac{{MR}^{\mathrm{2}} }{\mathrm{8}}\left(\frac{\mathrm{4}}{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{18}}\right)=\frac{{MR}^{\mathrm{2}} }{\mathrm{8}}×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{{MR}^{\mathrm{2}} }{\mathrm{16}} \\ $$$${sl}\:{required}\:{ans}\:{is}\:=\frac{\mathrm{9}{MR}^{\mathrm{2}} }{\mathrm{16}}−\frac{{MR}^{\mathrm{2}} }{\mathrm{16}}=\frac{{MR}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${pls}\:{check}… \\ $$$$ \\ $$
Commented by rahul 19 last updated on 24/Oct/18
$${Sir},\:{i}'{m}\:{getting}\:{same}\:{answer}. \\ $$$${But}\:{i}\:{wonder}\:{moment} \\ $$$${of}\:{inertia}\:{of}\:\:{disc}\:{of}\:{mass}\:{m}\:=\:\frac{{mR}^{\mathrm{2}} }{\mathrm{2}}. \\ $$$$\left({normal}\:{disc}\right) \\ $$$${if}\:{we}\:{take}\:{another}\:{disc}\:{which}\:{has}\:{a}\:{hole}, \\ $$$${of}\:{mass}\:{m},{M}.{I}\:{is}\:{still}\:{same}! \\ $$
Commented by MrW3 last updated on 24/Oct/18
$${your}\:{comparation}\:{is}\:{not}\:{really}\:{correct}. \\ $$$${the}\:{disc}\:{without}\:{hole}\:{and}\:{the}\:{disc}\:{with} \\ $$$${hole}\:{do}\:{have}\:{in}\:{fact}\:{not}\:{the}\:{same}\:{MoI} \\ $$$${w}.{r}.{t}.\:{their}\:{CoM}. \\ $$$${I}_{{disc}\:{without}\:{hole}} =\frac{{MR}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${I}_{{disc}\:{with}\:{hole}} <\frac{{MR}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${the}\:{MoI}\:{of}\:{a}\:{object}\:{w}.{r}.{t}.\:{its}\:{CoM}\:{is} \\ $$$${the}\:{smallest}.\:{its}\:{MoI}\:{w}.{r}.{t}.\:{to}\:{any} \\ $$$${other}\:{point}\:{is}\:{bigger}.\:{for}\:{the}\:{disc}\:{with} \\ $$$${hole}\:{if}\:{we}\:{calculate}\:{its}\:{MoI}\:{not}\:{w}.{r}.{t}.\:{its} \\ $$$${CoM},\:{but}\:{w}.{r}.{t}.\:{to}\:{an}\:{other}\:{point},\:{we} \\ $$$${will}\:{get}\:{a}\:{bigger}\:{value}.\:{in}\:{fact}\:{we}\:{can} \\ $$$${get}\:{any}\:{value}\:{if}\:{we}\:{choose}\:{this}\:{point} \\ $$$${correspondingly}.\:{for}\:{the}\:{disc}\:{with}\:{hole} \\ $$$${if}\:{we}\:{the}\:{point}\:{O}\:{which}\:{is}\:{not}\:{its}\:{CoM}, \\ $$$${we}'{ll}\:{get}\:{the}\:{same}\:{value}\:{as}\:{the}\:{MoI} \\ $$$${of}\:{a}\:{disc}\:{without}\:{hole}\:{w}.{r}.{t}.\:{its}\:{CoM}. \\ $$
Answered by ajfour last updated on 24/Oct/18
$${I}_{{reqd}} =\:\frac{\mathrm{1}}{\mathrm{2}}{MR}^{\:\mathrm{2}} \:. \\ $$
Commented by rahul 19 last updated on 24/Oct/18
$${Sir},\:{is}\:{this}\:{method}\:{correct}\:? \\ $$$${M}.{I}=\:\frac{\mathrm{1}}{\mathrm{2}}×{M}×{R}^{\mathrm{2}} \:{where}\:{M}={mass}\:{of} \\ $$$${remaining}\:{disc}……{or}\:{we}\:{need}\:{to} \\ $$$${calculate}\:{the}\:{way}\:{Tanmay}\:{sir}\:{has}\:{done}. \\ $$
Commented by ajfour last updated on 24/Oct/18
$${yes}\:{i}\:{had}\:{myself}\:{solved}\:{the}\:{same} \\ $$$${way};\:{only}\:{dint}\:{post};\:{but}\:{it}\:{could} \\ $$$${be}\:{reduced}\:{a}\:{little}; \\ $$$$\frac{{M}+{m}}{{m}}\:=\:\frac{{R}^{\mathrm{2}} }{\left({R}/\mathrm{3}\right)^{\mathrm{2}} }\:=\:\mathrm{9}\:\:\Rightarrow\:{M}=\mathrm{8}{m} \\ $$$${I}=\frac{\left({M}+{m}\right){R}^{\mathrm{2}} }{\mathrm{2}}−\left[\frac{{m}}{\mathrm{2}}\left(\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} +{m}\left(\frac{\mathrm{2}{R}}{\mathrm{3}}\right)^{\mathrm{2}} \right] \\ $$$$\:\:=\:\frac{\mathrm{9}{mR}^{\mathrm{2}} }{\mathrm{2}}−\frac{{mR}^{\mathrm{2}} }{\mathrm{18}}−\frac{\mathrm{4}{mR}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\:\:=\:\frac{{mR}^{\mathrm{2}} }{\mathrm{18}}\left(\mathrm{81}−\mathrm{1}−\mathrm{8}\right)\:=\:\mathrm{4}{mR}^{\mathrm{2}} \\ $$$$\:=\:\mathrm{4}\left(\frac{{M}}{\mathrm{8}}\right){R}^{\mathrm{2}} \:=\:\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\:. \\ $$