Menu Close

Question-46299




Question Number 46299 by rahul 19 last updated on 23/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Oct/18
area remaining portion=πR^2 −π((R/3))^2   =πR^2 (1−(1/9))=((8πR^2 )/9)  mass per unit area(ρ)=(M/((8πR^2 )/9))=((9M)/(8πR^2 ))  so mass for cut disc=π(R^2 /9)×((9M)/(8πR^2 ))=(M/8)  mass of uncut complete disc=M+(M/8)=((9M)/8)  moment of inertia of uncut complete disc   about the axis ⊥ to the plane of disc tbrough  centre  =((9M)/8)×(R^2 /2)=((9MR^2 )/(16))  ((9MR^2 )/(16))←I_o   momeng of inertia cut small disc about  mentioned axix =(M/8)×(R−(R/3))^2 +(M/8)×((R/3))^2 ×(1/2)  =(M/8)×((4R^2 )/9)+(M/8)×(R^2 /(18))=((MR^2 )/8)((4/9)+(1/(18)))=((MR^2 )/8)×(1/2)  =((MR^2 )/(16))  sl required ans is =((9MR^2 )/(16))−((MR^2 )/(16))=((MR^2 )/2)  pls check...
$${area}\:{remaining}\:{portion}=\pi{R}^{\mathrm{2}} −\pi\left(\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$=\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{9}}\right)=\frac{\mathrm{8}\pi{R}^{\mathrm{2}} }{\mathrm{9}} \\ $$$${mass}\:{per}\:{unit}\:{area}\left(\rho\right)=\frac{{M}}{\frac{\mathrm{8}\pi{R}^{\mathrm{2}} }{\mathrm{9}}}=\frac{\mathrm{9}{M}}{\mathrm{8}\pi{R}^{\mathrm{2}} } \\ $$$${so}\:{mass}\:{for}\:{cut}\:{disc}=\pi\frac{{R}^{\mathrm{2}} }{\mathrm{9}}×\frac{\mathrm{9}{M}}{\mathrm{8}\pi{R}^{\mathrm{2}} }=\frac{{M}}{\mathrm{8}} \\ $$$${mass}\:{of}\:{uncut}\:{complete}\:{disc}={M}+\frac{{M}}{\mathrm{8}}=\frac{\mathrm{9}{M}}{\mathrm{8}} \\ $$$${moment}\:{of}\:{inertia}\:{of}\:{uncut}\:{complete}\:{disc}\: \\ $$$${about}\:{the}\:{axis}\:\bot\:{to}\:{the}\:{plane}\:{of}\:{disc}\:{tbrough} \\ $$$${centre} \\ $$$$=\frac{\mathrm{9}{M}}{\mathrm{8}}×\frac{{R}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{9}{MR}^{\mathrm{2}} }{\mathrm{16}} \\ $$$$\frac{\mathrm{9}{MR}^{\mathrm{2}} }{\mathrm{16}}\leftarrow{I}_{{o}} \\ $$$${momeng}\:{of}\:{inertia}\:{cut}\:{small}\:{disc}\:{about} \\ $$$${mentioned}\:{axix}\:=\frac{{M}}{\mathrm{8}}×\left({R}−\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} +\frac{{M}}{\mathrm{8}}×\left(\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{{M}}{\mathrm{8}}×\frac{\mathrm{4}{R}^{\mathrm{2}} }{\mathrm{9}}+\frac{{M}}{\mathrm{8}}×\frac{{R}^{\mathrm{2}} }{\mathrm{18}}=\frac{{MR}^{\mathrm{2}} }{\mathrm{8}}\left(\frac{\mathrm{4}}{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{18}}\right)=\frac{{MR}^{\mathrm{2}} }{\mathrm{8}}×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{{MR}^{\mathrm{2}} }{\mathrm{16}} \\ $$$${sl}\:{required}\:{ans}\:{is}\:=\frac{\mathrm{9}{MR}^{\mathrm{2}} }{\mathrm{16}}−\frac{{MR}^{\mathrm{2}} }{\mathrm{16}}=\frac{{MR}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${pls}\:{check}… \\ $$$$ \\ $$
Commented by rahul 19 last updated on 24/Oct/18
Sir, i′m getting same answer.  But i wonder moment  of inertia of  disc of mass m = ((mR^2 )/2).  (normal disc)  if we take another disc which has a hole,  of mass m,M.I is still same!
$${Sir},\:{i}'{m}\:{getting}\:{same}\:{answer}. \\ $$$${But}\:{i}\:{wonder}\:{moment} \\ $$$${of}\:{inertia}\:{of}\:\:{disc}\:{of}\:{mass}\:{m}\:=\:\frac{{mR}^{\mathrm{2}} }{\mathrm{2}}. \\ $$$$\left({normal}\:{disc}\right) \\ $$$${if}\:{we}\:{take}\:{another}\:{disc}\:{which}\:{has}\:{a}\:{hole}, \\ $$$${of}\:{mass}\:{m},{M}.{I}\:{is}\:{still}\:{same}! \\ $$
Commented by MrW3 last updated on 24/Oct/18
your comparation is not really correct.  the disc without hole and the disc with  hole do have in fact not the same MoI  w.r.t. their CoM.  I_(disc without hole) =((MR^2 )/2)  I_(disc with hole) <((MR^2 )/2)  the MoI of a object w.r.t. its CoM is  the smallest. its MoI w.r.t. to any  other point is bigger. for the disc with  hole if we calculate its MoI not w.r.t. its  CoM, but w.r.t. to an other point, we  will get a bigger value. in fact we can  get any value if we choose this point  correspondingly. for the disc with hole  if we the point O which is not its CoM,  we′ll get the same value as the MoI  of a disc without hole w.r.t. its CoM.
$${your}\:{comparation}\:{is}\:{not}\:{really}\:{correct}. \\ $$$${the}\:{disc}\:{without}\:{hole}\:{and}\:{the}\:{disc}\:{with} \\ $$$${hole}\:{do}\:{have}\:{in}\:{fact}\:{not}\:{the}\:{same}\:{MoI} \\ $$$${w}.{r}.{t}.\:{their}\:{CoM}. \\ $$$${I}_{{disc}\:{without}\:{hole}} =\frac{{MR}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${I}_{{disc}\:{with}\:{hole}} <\frac{{MR}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${the}\:{MoI}\:{of}\:{a}\:{object}\:{w}.{r}.{t}.\:{its}\:{CoM}\:{is} \\ $$$${the}\:{smallest}.\:{its}\:{MoI}\:{w}.{r}.{t}.\:{to}\:{any} \\ $$$${other}\:{point}\:{is}\:{bigger}.\:{for}\:{the}\:{disc}\:{with} \\ $$$${hole}\:{if}\:{we}\:{calculate}\:{its}\:{MoI}\:{not}\:{w}.{r}.{t}.\:{its} \\ $$$${CoM},\:{but}\:{w}.{r}.{t}.\:{to}\:{an}\:{other}\:{point},\:{we} \\ $$$${will}\:{get}\:{a}\:{bigger}\:{value}.\:{in}\:{fact}\:{we}\:{can} \\ $$$${get}\:{any}\:{value}\:{if}\:{we}\:{choose}\:{this}\:{point} \\ $$$${correspondingly}.\:{for}\:{the}\:{disc}\:{with}\:{hole} \\ $$$${if}\:{we}\:{the}\:{point}\:{O}\:{which}\:{is}\:{not}\:{its}\:{CoM}, \\ $$$${we}'{ll}\:{get}\:{the}\:{same}\:{value}\:{as}\:{the}\:{MoI} \\ $$$${of}\:{a}\:{disc}\:{without}\:{hole}\:{w}.{r}.{t}.\:{its}\:{CoM}. \\ $$
Answered by ajfour last updated on 24/Oct/18
I_(reqd) = (1/2)MR^( 2)  .
$${I}_{{reqd}} =\:\frac{\mathrm{1}}{\mathrm{2}}{MR}^{\:\mathrm{2}} \:. \\ $$
Commented by rahul 19 last updated on 24/Oct/18
Sir, is this method correct ?  M.I= (1/2)×M×R^2  where M=mass of  remaining disc......or we need to  calculate the way Tanmay sir has done.
$${Sir},\:{is}\:{this}\:{method}\:{correct}\:? \\ $$$${M}.{I}=\:\frac{\mathrm{1}}{\mathrm{2}}×{M}×{R}^{\mathrm{2}} \:{where}\:{M}={mass}\:{of} \\ $$$${remaining}\:{disc}……{or}\:{we}\:{need}\:{to} \\ $$$${calculate}\:{the}\:{way}\:{Tanmay}\:{sir}\:{has}\:{done}. \\ $$
Commented by ajfour last updated on 24/Oct/18
yes i had myself solved the same  way; only dint post; but it could  be reduced a little;  ((M+m)/m) = (R^2 /((R/3)^2 )) = 9  ⇒ M=8m  I=(((M+m)R^2 )/2)−[(m/2)((R/3))^2 +m(((2R)/3))^2 ]    = ((9mR^2 )/2)−((mR^2 )/(18))−((4mR^2 )/9)    = ((mR^2 )/(18))(81−1−8) = 4mR^2    = 4((M/8))R^2  = ((MR^2 )/2) .
$${yes}\:{i}\:{had}\:{myself}\:{solved}\:{the}\:{same} \\ $$$${way};\:{only}\:{dint}\:{post};\:{but}\:{it}\:{could} \\ $$$${be}\:{reduced}\:{a}\:{little}; \\ $$$$\frac{{M}+{m}}{{m}}\:=\:\frac{{R}^{\mathrm{2}} }{\left({R}/\mathrm{3}\right)^{\mathrm{2}} }\:=\:\mathrm{9}\:\:\Rightarrow\:{M}=\mathrm{8}{m} \\ $$$${I}=\frac{\left({M}+{m}\right){R}^{\mathrm{2}} }{\mathrm{2}}−\left[\frac{{m}}{\mathrm{2}}\left(\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} +{m}\left(\frac{\mathrm{2}{R}}{\mathrm{3}}\right)^{\mathrm{2}} \right] \\ $$$$\:\:=\:\frac{\mathrm{9}{mR}^{\mathrm{2}} }{\mathrm{2}}−\frac{{mR}^{\mathrm{2}} }{\mathrm{18}}−\frac{\mathrm{4}{mR}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\:\:=\:\frac{{mR}^{\mathrm{2}} }{\mathrm{18}}\left(\mathrm{81}−\mathrm{1}−\mathrm{8}\right)\:=\:\mathrm{4}{mR}^{\mathrm{2}} \\ $$$$\:=\:\mathrm{4}\left(\frac{{M}}{\mathrm{8}}\right){R}^{\mathrm{2}} \:=\:\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *