Question Number 46383 by peter frank last updated on 24/Oct/18
Commented by maxmathsup by imad last updated on 24/Oct/18
$${z}=\mathrm{0}\:{is}\:{not}\:{solution}\:{for}\:{z}\neq\mathrm{0}\:\:\left({e}\right)\:\Leftrightarrow\:\left(\frac{{z}+\mathrm{1}}{{z}}\right)^{{n}} =\mathrm{1}\:\Leftrightarrow\left(\mathrm{1}+{z}^{−\mathrm{1}} \right)^{{n}} =\mathrm{1}\:\:{the}\:{roots}\:{of} \\ $$$${Z}^{{n}} =\mathrm{1}\:{are}\:{the}\:{compolex}\:{Z}_{{k}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:{with}\:{k}\in\left[\left[\mathrm{1},{n}−\mathrm{1}\right]\right]\:{so}\:{the}\:{solutions}\:{for} \\ $$$${the}\:{equation}\:{are}\:{z}_{{k}} \:/\:\:\:\:\:\mathrm{1}+{z}_{{k}} ^{−\mathrm{1}} \:\:={Z}_{{k}} \:\Rightarrow\:\frac{{z}_{{k}} +\mathrm{1}}{{z}_{{k}} }={Z}_{{k}} \:\Rightarrow \\ $$$${z}_{{k}} +\mathrm{1}\:={Z}_{{k}} {z}_{{k}} \:\Rightarrow\:\left(\mathrm{1}−{Z}_{{k}} \right){z}_{{k}} =−\mathrm{1}\:\Rightarrow{z}_{{k}} =−\frac{\mathrm{1}}{\mathrm{1}−{Z}_{{k}} }\:=−\frac{\mathrm{1}}{\mathrm{1}−{cos}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)−{isin}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)} \\ $$$$=\:\frac{−\mathrm{1}}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)−\mathrm{2}{i}\:{sin}\left(\frac{{k}\pi}{{n}}\right){cos}\left(\frac{{k}\pi}{{n}}\right)}\:=\:\frac{−\mathrm{1}}{−\mathrm{2}{i}\:{sin}\left(\frac{{k}\pi}{{n}}\right){e}^{{i}\frac{{k}\pi}{{n}}} } \\ $$$$=\:\frac{−{i}}{\mathrm{2}{sin}\left(\frac{{k}\pi}{{n}}\right)}\:{e}^{−\frac{{ik}\pi}{{n}}} \:\:=\frac{−{i}}{\mathrm{2}{sin}\left(\frac{{k}\pi}{{n}}\right)}\left\{{cos}\left(\frac{{k}\pi}{{n}}\right)−{isin}\left(\frac{{k}\pi}{{n}}\right)\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\:−\frac{{i}}{\mathrm{2}}\:{cotan}\left(\frac{{k}\pi}{{n}}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{cotan}\left(\frac{{k}\pi}{{n}}\right)\right\}\:{with}\:{k}\in\left[\left[\mathrm{1},{n}−\mathrm{1}\right]\right]\:. \\ $$
Commented by maxmathsup by imad last updated on 24/Oct/18
$$\left.\mathrm{2}\:\right)\:\left({z}−\mathrm{1}\right)^{{n}} \:+{z}^{{n}} \:=\mathrm{0}\:\Leftrightarrow\:\left({z}−\mathrm{1}\right)^{{n}} \:=−{z}^{{n}} \:\Leftrightarrow\:\left(\frac{{z}−\mathrm{1}}{{z}}\right)^{{n}} \:=−\mathrm{1}\:\:={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi} \:\Rightarrow\: \\ $$$$\frac{{z}_{{k}} −\mathrm{1}}{{z}_{{k}} }\:=\:{e}^{{i}\left(\frac{\left.\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}\right.} \:\Rightarrow\:\mathrm{1}−{z}_{{k}} ^{−\mathrm{1}} \:=\:{e}^{{i}\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi} \:\Rightarrow\:\mathrm{1}−{e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}} \:={z}_{{k}} ^{−\mathrm{1}} \:\Rightarrow \\ $$$${z}_{{k}} =\:\frac{\mathrm{1}}{\mathrm{1}−{cos}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}\right)−{i}\:{sin}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}\right){cos}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)−\mathrm{2}{i}\:{sin}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right){cos}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)} \\ $$$$=\frac{\mathrm{1}}{−\mathrm{2}{i}\:{sin}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)\:{e}^{{i}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right)} } \\ $$$$=\:\frac{{i}}{\mathrm{2}{sin}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)}\left\{\:{cos}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)−{isin}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{{i}}{\mathrm{2}}\:{cotan}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\right)\:\:{with}\:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 24/Oct/18
$${the}\:{roots}\:{of}\:\left({z}−\mathrm{1}\right)^{\mathrm{5}} \:+{z}^{\mathrm{5}} =\mathrm{0}\:{are}\:{z}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{1}+{i}\:{cotan}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{10}}\right)\:\:\:{with}\:{k}\in\left[\left[\mathrm{0},\mathrm{4}\right]\right]\right. \\ $$$${z}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{1}+{icotan}\left(\frac{\pi}{\mathrm{10}}\right)\right\}\:\:\:,\:{z}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{1}+{i}\:{cotan}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)\right\} \\ $$$${z}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{1}+{i}\:{cotan}\left(\frac{\pi}{\mathrm{2}}\right)\right\}{dont}\:{exist}\:{and}\:{not}\:{solution} \\ $$$${z}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{1}+{i}\:{cotan}\left(\frac{\mathrm{7}\pi}{\mathrm{10}}\right)\right\}\:\:\:{z}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{1}+{i}\:{cotan}\left(\frac{\mathrm{9}\pi}{\mathrm{10}}\right)\right\} \\ $$$${also}\:{z}\:=\frac{\mathrm{1}}{\mathrm{2}}\:{is}\:{solution}\:{when}\:{cotan}\left(\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{10}}\right)=\mathrm{0} \\ $$
Answered by Smail last updated on 25/Oct/18
$$\left.{a}\right) \\ $$$$\left({z}+\mathrm{1}\right)^{{n}} ={z}^{{n}} \\ $$$${z}+\mathrm{1}={ze}^{\frac{\mathrm{2}{ik}\pi}{{n}}} \\ $$$${z}\left({e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} −\mathrm{1}\right)=\mathrm{1} \\ $$$${z}=\frac{\mathrm{1}}{{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} −\mathrm{1}}=\frac{\mathrm{1}}{{cos}\left(\frac{\mathrm{2}{k}\pi}{{n}}\right)−\mathrm{1}+{isin}\left(\frac{\mathrm{2}{ik}\pi}{{n}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)−\mathrm{1}−\mathrm{1}+{i}\left(\mathrm{2}{sin}\left(\frac{{k}\pi}{{n}}\right){cos}\left(\frac{{k}\pi}{{n}}\right)\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\left({cos}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)−\mathrm{1}+{isin}\left(\frac{{k}\pi}{{n}}\right){cos}\left(\frac{{k}\pi}{{n}}\right)\right)} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}\left({sin}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)−{isin}\left(\frac{{k}\pi}{{n}}\right){cos}\left(\frac{{k}\pi}{{n}}\right)\right)} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}{sin}\left(\frac{{k}\pi}{{n}}\right)\left({sin}\left(\frac{{k}\pi}{{n}}\right)−{icos}\left(\frac{{k}\pi}{{n}}\right)\right)} \\ $$$$=−\frac{{sin}\left(\frac{{k}\pi}{{n}}\right)+{icos}\left(\frac{{k}\pi}{{n}}\right)}{\mathrm{2}{sin}\left(\frac{{k}\pi}{{n}}\right)}=\frac{−\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{icot}\left(\frac{{k}\pi}{{n}}\right)\right) \\ $$$${z}=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{icot}\left(\frac{{k}\pi}{{n}}\right)\right) \\ $$$$\left.{b}\right)\:\:\:\left({z}−\mathrm{1}\right)^{{n}} =−{z}^{{n}} ={z}^{{n}} {e}^{{i}\left(\pi+\mathrm{2}{k}\pi\right)} \\ $$$${z}−\mathrm{1}={ze}^{{i}\pi\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}} \Leftrightarrow{z}\left({e}^{{i}\pi\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}} −\mathrm{1}\right)=−\mathrm{1} \\ $$$${z}=\frac{−\mathrm{1}}{{cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)−\mathrm{1}+{isin}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)} \\ $$$$=−\frac{{cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)−\mathrm{1}−{isin}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)}{\left({cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)−\mathrm{1}\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)} \\ $$$$=−\frac{{cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)−\mathrm{1}−{isin}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)}{{cos}^{\mathrm{2}} \left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)+\mathrm{1}−\mathrm{2}{cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)+{sin}^{\mathrm{2}} \left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)} \\ $$$$=−\frac{{cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)−\mathrm{1}−{isin}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)}{\mathrm{2}−\mathrm{2}{cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{i}\frac{{sin}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)}{\mathrm{1}−{cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{i}\frac{\mathrm{2}{sin}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right){cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right)}{\mathrm{1}−\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right)+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{i}\frac{{sin}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right){cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right)}{\mathrm{1}−{cos}^{\mathrm{2}} \left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right)}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{i}\frac{{sin}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right){cos}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right)}{{sin}^{\mathrm{2}} \left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right)}\right) \\ $$$${z}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{icot}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{n}}\pi\right)\right) \\ $$$${When}\:\:{n}=\mathrm{5} \\ $$$${z}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{icot}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{10}}\pi\right)\:\:{with}\:\:{k}=\left(\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\right)\right. \\ $$
Commented by peter frank last updated on 26/Oct/18
$${thanks}\:{sir} \\ $$