Question Number 46414 by Meritguide1234 last updated on 25/Oct/18
Commented by math1967 last updated on 25/Oct/18
$${Is}\:{the}\:{answar}\:\mathrm{2}\sqrt{\mathrm{3}} \\ $$
Answered by math1967 last updated on 25/Oct/18
$${let}\:\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\:={a}\:\therefore\sqrt{\mathrm{3}}\:−\sqrt{\mathrm{2}}\:=\frac{\mathrm{1}}{{a}} \\ $$$$\therefore{x}=\overset{\mathrm{5}} {\:}\sqrt{{a}\:}\:+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{5}}]{{a}}}={p}+\frac{\mathrm{1}}{{p}}\:\:\left[{let}\overset{\mathrm{5}} {\:}\sqrt{{a}}\:={p}\right] \\ $$$$\:\:{x}^{\mathrm{3}} ={p}^{\mathrm{3}} +\frac{\mathrm{1}}{{p}^{\mathrm{3}} }\:+\mathrm{3}\left({p}+\frac{\mathrm{1}}{{p}}\right) \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}={p}^{\mathrm{3}} +\frac{\mathrm{1}}{{p}^{\mathrm{3}} }\:\:\:\:\left[\because{p}+\frac{\mathrm{1}}{{p}}={x}\right] \\ $$$${now}\:{x}^{\mathrm{5}} ={p}^{\mathrm{5}} +\frac{\mathrm{1}}{{p}^{\mathrm{5}} }\:+\mathrm{5}\left({p}^{\mathrm{3}} +\frac{\mathrm{1}}{{p}^{\mathrm{3}} }\right)+\mathrm{10}\left({p}+\frac{\mathrm{1}}{{p}}\right) \\ $$$${x}^{\mathrm{5}} ={p}^{\mathrm{5}} +\frac{\mathrm{1}}{{p}^{\mathrm{5}} }\:+\mathrm{5}\left({x}^{\mathrm{3}} −\mathrm{3}{x}\right)+\mathrm{10}{x} \\ $$$${x}^{\mathrm{5}} −\mathrm{5}{x}^{\mathrm{3}} +\mathrm{5}{x}=\:\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\:−\sqrt{\mathrm{2}}} \\ $$$$\therefore\:{x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{3}} +\mathrm{5}{x}=\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\:−\sqrt{\mathrm{2}}=\mathrm{2}\sqrt{\mathrm{3}} \\ $$
Commented by Meritguide1234 last updated on 26/Oct/18
$${nice}\:{solution} \\ $$
Commented by math1967 last updated on 26/Oct/18
$${Thank}\:{you}\:{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Oct/18
$${x}={a}^{\frac{\mathrm{1}}{\mathrm{5}}} +{a}^{−\frac{\mathrm{1}}{\mathrm{5}}} \\ $$$${x}^{\mathrm{5}} −\mathrm{5}{x}^{\mathrm{3}} +\mathrm{5}{x} \\ $$$$\left({a}^{\frac{\mathrm{1}}{\mathrm{5}}} +{a}^{\frac{−\mathrm{1}}{\mathrm{5}}} \right)^{\mathrm{5}} −\mathrm{5}\left({a}^{\frac{\mathrm{1}}{\mathrm{5}}} +{a}^{\frac{−\mathrm{1}}{\mathrm{5}}} \right)^{\mathrm{3}} +\mathrm{5}\left({a}^{\frac{\mathrm{1}}{\mathrm{5}}} +{a}^{\frac{−\mathrm{1}}{\mathrm{5}}} \right) \\ $$$$={a}+\mathrm{5}{c}_{\mathrm{1}} {a}^{\frac{\mathrm{4}}{\mathrm{5}}} {a}^{\frac{−\mathrm{1}}{\mathrm{5}}} +\mathrm{5}{c}_{\mathrm{2}} {a}^{\frac{\mathrm{3}}{\mathrm{5}}} {a}^{\frac{−\mathrm{2}}{\mathrm{5}}} +\mathrm{5}{c}_{\mathrm{3}} {a}^{\frac{\mathrm{2}}{\mathrm{5}}} {a}^{\frac{−\mathrm{3}}{\mathrm{5}}} +\mathrm{5}{c}_{\mathrm{4}} {a}^{\frac{\mathrm{1}}{\mathrm{5}}} {a}^{\frac{−\mathrm{4}}{\mathrm{5}}} +\mathrm{5}{c}_{\mathrm{5}} {a}^{−\mathrm{1}} \\ $$$$−\mathrm{5}\left({a}^{\frac{\mathrm{3}}{\mathrm{5}}} +\mathrm{3}{c}_{\mathrm{1}} {a}^{\frac{\mathrm{2}}{\mathrm{5}}} {a}^{\frac{−\mathrm{1}}{\mathrm{5}}} +\mathrm{3}{c}_{\mathrm{2}} {a}^{\frac{\mathrm{1}}{\mathrm{5}}} {a}^{\frac{−\mathrm{2}}{\mathrm{5}}} +{a}^{\frac{−\mathrm{3}}{\left.\mathrm{5}\right)}} \right. \\ $$$$+\mathrm{5}\left({a}^{\frac{\mathrm{1}}{\mathrm{5}}} +{a}^{\frac{−\mathrm{1}}{\mathrm{5}}} \right) \\ $$$$={a}+\mathrm{5}{a}^{\frac{\mathrm{3}}{\mathrm{5}}} +\mathrm{10}{a}^{\frac{\mathrm{1}}{\mathrm{5}}} +\mathrm{10}{a}^{\frac{−\mathrm{1}}{\mathrm{5}}} +\mathrm{5}{a}^{\frac{−\mathrm{3}}{\mathrm{5}}} +\frac{\mathrm{1}}{{a}}+ \\ $$$$\:\:\:−\mathrm{5}{a}^{\frac{\mathrm{3}}{\mathrm{5}}} −\mathrm{15}{a}^{\frac{\mathrm{1}}{\mathrm{5}}} −\mathrm{15}{a}^{\frac{−\mathrm{1}}{\mathrm{5}}} −\mathrm{5}{a}^{\frac{−\mathrm{3}}{\mathrm{5}}} +\mathrm{5}{a}^{\frac{\mathrm{1}}{\mathrm{5}}} +\mathrm{5}^{\frac{−\mathrm{1}}{\mathrm{5}}} \\ $$$$={a}+\frac{\mathrm{1}}{{a}}=\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\:−\sqrt{\mathrm{2}}\:=\mathrm{2}\sqrt{\mathrm{3}}\:{answer} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Meritguide1234 last updated on 26/Oct/18
$${very}\:{good}\:{Mr}.{Tanmoy} \\ $$$${Are}\:{you}\:{professor}? \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 26/Oct/18
$${no}\:{sir}..{i}\:{enjoy}\:\:{it}…{i}\:{have}\:{interest}\:{in}\:{physics} \\ $$$${and}\:{mathematics}… \\ $$
Commented by Meritguide1234 last updated on 26/Oct/18
$${basically}\:{i}\:{am}\:{teacher}\:{of}\:{senior}\:{secondary}\:{school}\:{of}\:{taiwan}. \\ $$