Menu Close

Question-46552




Question Number 46552 by peter frank last updated on 28/Oct/18
Commented by MJS last updated on 28/Oct/18
b) is not clear. what does this mean “if (it?)  is parallel to y=2x+3 at  ((0),(1) )”? if  ((0),(1) ) is a point  on the curve  ((0),(4) ) cannot be or vice versa.  please check this
$$\left.{b}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{clear}.\:\mathrm{what}\:\mathrm{does}\:\mathrm{this}\:\mathrm{mean}\:“\mathrm{if}\:\left(\mathrm{it}?\right) \\ $$$$\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:{y}=\mathrm{2}{x}+\mathrm{3}\:\mathrm{at}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}''?\:\mathrm{if}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\:\mathrm{is}\:\mathrm{a}\:\mathrm{point} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{curve}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{4}}\end{pmatrix}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{or}\:\mathrm{vice}\:\mathrm{versa}. \\ $$$$\mathrm{please}\:\mathrm{check}\:\mathrm{this} \\ $$
Commented by peter frank last updated on 28/Oct/18
yes sir! definitely problem is not clear
$$\mathrm{yes}\:\mathrm{sir}!\:\mathrm{definitely}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{not}\:\mathrm{clear} \\ $$
Answered by MJS last updated on 28/Oct/18
f(x)=x^3 −3x^2 +x+4  in turning points f′′(x)=0  polynomes of 3^(rd)  degree have 1 turning point  f′′(x)=6x−6  ⇒ turning point T= ((1),(3) )  checking the tangent in this point  f′(x)=3x^2 −6x+1  f′(1)=−2 ⇒ tangent decreasing ⇒  ⇒ curvature negative (clockwise) for x<1        curvature positive (counterclockwise) for x>1
$${f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +{x}+\mathrm{4} \\ $$$$\mathrm{in}\:\mathrm{turning}\:\mathrm{points}\:{f}''\left({x}\right)=\mathrm{0} \\ $$$$\mathrm{polynomes}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree}\:\mathrm{have}\:\mathrm{1}\:\mathrm{turning}\:\mathrm{point} \\ $$$${f}''\left({x}\right)=\mathrm{6}{x}−\mathrm{6} \\ $$$$\Rightarrow\:\mathrm{turning}\:\mathrm{point}\:{T}=\begin{pmatrix}{\mathrm{1}}\\{\mathrm{3}}\end{pmatrix} \\ $$$$\mathrm{checking}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{in}\:\mathrm{this}\:\mathrm{point} \\ $$$${f}'\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{1} \\ $$$${f}'\left(\mathrm{1}\right)=−\mathrm{2}\:\Rightarrow\:\mathrm{tangent}\:\mathrm{decreasing}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{curvature}\:\mathrm{negative}\:\left(\mathrm{clockwise}\right)\:\mathrm{for}\:{x}<\mathrm{1} \\ $$$$\:\:\:\:\:\:\mathrm{curvature}\:\mathrm{positive}\:\left(\mathrm{counterclockwise}\right)\:\mathrm{for}\:{x}>\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *