Question Number 46637 by rahul 19 last updated on 29/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18
$${ok}… \\ $$
Commented by rahul 19 last updated on 29/Oct/18
$${Ans}.\:{is}\:{D}….{since}\:{it}\:{is}\:{asking}\:{for} \\ $$$${largest}\:{possible}\:{radius}…. \\ $$
Commented by rahul 19 last updated on 29/Oct/18
$${for}\:{eg}:\:{if}\:{sides}\:{are}\:\mathrm{12},\mathrm{16},\mathrm{20}\:{then}\:{r}=\mathrm{4}… \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18
$${sides}\:{are}\:\mathrm{5},\mathrm{12},\mathrm{13} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{5}×{r}+\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{12}×{r}+\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{13}×{r}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{5}×\mathrm{12} \\ $$$$\mathrm{30}{r}=\mathrm{60}\:\:\:{r}=\mathrm{2} \\ $$
Answered by MJS last updated on 31/Oct/18
$$\mathrm{these}\:\mathrm{are}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{triangles}: \\ $$$$\mathrm{9}\:\mathrm{12}\:\mathrm{15}\:{r}_{{i}} =\mathrm{3} \\ $$$$\mathrm{12}\:\mathrm{16}\:\mathrm{20}\:{r}_{{i}} =\mathrm{4} \\ $$$$\mathrm{5}\:\mathrm{12}\:\mathrm{13}\:{r}_{{i}} =\mathrm{2} \\ $$$$\mathrm{12}\:\mathrm{35}\:\mathrm{37}\:{r}_{{i}} =\mathrm{5} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\mathrm{D} \\ $$
Commented by rahul 19 last updated on 31/Oct/18
$${Sir},\:{how}\:{you}\:{checked}\:{these}\:{are}\:{only} \\ $$$${possible}\:{triangles}….? \\ $$
Commented by MJS last updated on 31/Oct/18
$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \:\mathrm{with}\:{a},\:{b},\:{c}\:\in\mathbb{N}\backslash\left\{\mathrm{0}\right\} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{set}\:{c}=\mathrm{12}\:\mathrm{and}\:{b}={a}+{n}\:\mathrm{with}\:{n}\in\mathbb{N} \\ $$$${a}^{\mathrm{2}} +\left({a}+{n}\right)^{\mathrm{2}} =\mathrm{144} \\ $$$$\Rightarrow\:{a}=\frac{\sqrt{\mathrm{288}−{n}^{\mathrm{2}} }}{\mathrm{2}}−\frac{{n}}{\mathrm{2}}\in\mathbb{N}\:\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{set}\:{b}=\mathrm{12}\:\mathrm{and}\:{c}={a}+{n}\:\mathrm{with}\:{n}\in\mathbb{N} \\ $$$${a}^{\mathrm{2}} +\mathrm{144}=\left({a}+{n}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{a}=\frac{\mathrm{72}}{{n}}−\frac{{n}}{\mathrm{2}}\in\mathbb{N}\:\Rightarrow\:{n}\in\left\{\mathrm{2},\:\mathrm{4},\:\mathrm{6},\:\mathrm{8}\right\} \\ $$
Commented by rahul 19 last updated on 31/Oct/18
$${perfect}! \\ $$$${Thanks}\:{sir}! \\ $$