Menu Close

Question-46720




Question Number 46720 by Necxx last updated on 30/Oct/18
Commented by Necxx last updated on 30/Oct/18
please help with no. 15 cos i got it  as  −sin^(−1) ((1/x))− ((√(x^2 +1))/x) +c
pleasehelpwithno.15cosigotitassin1(1x)x2+1x+c
Commented by maxmathsup by imad last updated on 30/Oct/18
let A =∫ (1/x^2 )(√((x−1)/(x+1)))dx changement ((x−1)/(x+1)) =t^2  give x−1=t^2 x +t^2  ⇒  (1−t^2 )x=1+t^2  ⇒x=((1+t^2 )/(1−t^2 )) ⇒ dx =((2t(1−t^2 )+2t(1+t^2 ))/((1−t^2 )^2 ))dt  =((2t −2t^3  +2t +2t^3 )/((1−t^2 )^2 ))dt =((4t)/((1−t^2 )^2 ))dt ⇒A=∫  (((1−t^2 )^2 )/((1+t^2 )^2 )) t  ((4t)/((1−t^2 )^2 ))dt  =4 ∫  (t^2 /((1+t^2 )^2 ))dt =4 ∫  ((1+t^2 −1)/((1+t^2 )^2 )) dt =4 ∫ (dt/(1+t^2 )) −4 ∫  (dt/((1+t^2 )^2 ))  =4 arctan(t)−4 ∫  (dt/((1+t^2 )^2 ))  changement t=tanθ give  ∫  (dt/((1+t^2 )^2 )) = ∫  ((1+tan^2 θ)/((1+tan^2 θ)^2 ))dθ =∫  (dθ/(1+tan^2 θ)) =∫ cos^2 θ dθ =  =(1/2) ∫ (1+cos(2θ))dθ =(θ/2) +(1/4)sin(2θ) =((arctan(t))/2) +(1/4)sin(2arctant) but  sin(2arctant)=2 sin(arctant)cos(arctant)  =2 (t/( (√(1+t^2 )))) .(1/( (√(1+t^2 )))) =((2t)/(1+t^2 )) ⇒ ∫  (dt/((1+t^2 )^2 )) =((arctan(t))/2) +(t/(2(1+t^2 ))) ⇒  A =2arctan(t)−((2t)/(1+t^2 )) +c  =2 arctan((√((x−1)/(x+1))))−((2(√((x−1)/(x+1))))/(1+((x−1)/(x+1)))) +c  =2 arctan((√((x−1)/(x+1))))−2 (√((x−1)/(x+1)))((x+1)/(2x)) +c  A=2 arctan((√((x−1)/(x+1)))) +((√(x^2 −1))/x) +c
letA=1x2x1x+1dxchangementx1x+1=t2givex1=t2x+t2(1t2)x=1+t2x=1+t21t2dx=2t(1t2)+2t(1+t2)(1t2)2dt=2t2t3+2t+2t3(1t2)2dt=4t(1t2)2dtA=(1t2)2(1+t2)2t4t(1t2)2dt=4t2(1+t2)2dt=41+t21(1+t2)2dt=4dt1+t24dt(1+t2)2=4arctan(t)4dt(1+t2)2changementt=tanθgivedt(1+t2)2=1+tan2θ(1+tan2θ)2dθ=dθ1+tan2θ=cos2θdθ==12(1+cos(2θ))dθ=θ2+14sin(2θ)=arctan(t)2+14sin(2arctant)butsin(2arctant)=2sin(arctant)cos(arctant)=2t1+t2.11+t2=2t1+t2dt(1+t2)2=arctan(t)2+t2(1+t2)A=2arctan(t)2t1+t2+c=2arctan(x1x+1)2x1x+11+x1x+1+c=2arctan(x1x+1)2x1x+1x+12x+cA=2arctan(x1x+1)+x21x+c
Commented by Necxx last updated on 30/Oct/18
thank you so much sir .   The issue now is that this answer  is not in the option. Does it mean  the options are all wrong?
thankyousomuchsir.Theissuenowisthatthisanswerisnotintheoption.Doesitmeantheoptionsareallwrong?
Commented by maxmathsup by imad last updated on 30/Oct/18
yes there is some error in the given answers but always you must trust  yourself and your method...
yesthereissomeerrorinthegivenanswersbutalwaysyoumusttrustyourselfandyourmethod
Commented by maxmathsup by imad last updated on 30/Oct/18
16) let  I = ∫ (dx/( (√(x−x^2 )))) ⇒I =∫  (dx/( (√(−(x^2 −x))))) =∫  (dx/( (√(−(x^2 −2(1/2)x+(1/4)−(1/4))))))  = ∫   (dx/( (√((1/4)−(x−(1/2))^2 )))) =_(x−(1/2)=(1/2)sint)    ∫      (1/(2.(1/2)cost)) cost dt  = ∫ dt =t +c = arcsin(2x−1) +c  so option (B) is the answer.
16)letI=dxxx2I=dx(x2x)=dx(x2212x+1414)=dx14(x12)2=x12=12sint12.12costcostdt=dt=t+c=arcsin(2x1)+csooption(B)istheanswer.
Commented by Necxx last updated on 30/Oct/18
wow.... i solved this and got A as  my answer
wow.isolvedthisandgotAasmyanswer

Leave a Reply

Your email address will not be published. Required fields are marked *