Question Number 46720 by Necxx last updated on 30/Oct/18
Commented by Necxx last updated on 30/Oct/18
$${please}\:{help}\:{with}\:{no}.\:\mathrm{15}\:{cos}\:{i}\:{got}\:{it} \\ $$$${as} \\ $$$$−\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)−\:\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}}\:+{c} \\ $$
Commented by maxmathsup by imad last updated on 30/Oct/18
$${let}\:{A}\:=\int\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\sqrt{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}}{dx}\:{changement}\:\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\:={t}^{\mathrm{2}} \:{give}\:{x}−\mathrm{1}={t}^{\mathrm{2}} {x}\:+{t}^{\mathrm{2}} \:\Rightarrow \\ $$$$\left(\mathrm{1}−{t}^{\mathrm{2}} \right){x}=\mathrm{1}+{t}^{\mathrm{2}} \:\Rightarrow{x}=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}−{t}^{\mathrm{2}} }\:\Rightarrow\:{dx}\:=\frac{\mathrm{2}{t}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)+\mathrm{2}{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{2}{t}\:−\mathrm{2}{t}^{\mathrm{3}} \:+\mathrm{2}{t}\:+\mathrm{2}{t}^{\mathrm{3}} }{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:=\frac{\mathrm{4}{t}}{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:\Rightarrow{A}=\int\:\:\frac{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{t}\:\:\frac{\mathrm{4}{t}}{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{4}\:\int\:\:\frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:=\mathrm{4}\:\int\:\:\frac{\mathrm{1}+{t}^{\mathrm{2}} −\mathrm{1}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dt}\:=\mathrm{4}\:\int\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:−\mathrm{4}\:\int\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=\mathrm{4}\:{arctan}\left({t}\right)−\mathrm{4}\:\int\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:{changement}\:{t}={tan}\theta\:{give} \\ $$$$\int\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:\int\:\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} \theta}{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }{d}\theta\:=\int\:\:\frac{{d}\theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:=\int\:{cos}^{\mathrm{2}} \theta\:{d}\theta\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\left(\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)\right){d}\theta\:=\frac{\theta}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}\theta\right)\:=\frac{{arctan}\left({t}\right)}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{arctant}\right)\:{but} \\ $$$${sin}\left(\mathrm{2}{arctant}\right)=\mathrm{2}\:{sin}\left({arctant}\right){cos}\left({arctant}\right) \\ $$$$=\mathrm{2}\:\frac{{t}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:.\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:=\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\Rightarrow\:\int\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{{arctan}\left({t}\right)}{\mathrm{2}}\:+\frac{{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:\Rightarrow \\ $$$${A}\:=\mathrm{2}{arctan}\left({t}\right)−\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:+{c} \\ $$$$=\mathrm{2}\:{arctan}\left(\sqrt{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}}\right)−\frac{\mathrm{2}\sqrt{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}}}{\mathrm{1}+\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}}\:+{c} \\ $$$$=\mathrm{2}\:{arctan}\left(\sqrt{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}}\right)−\mathrm{2}\:\sqrt{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}}\frac{{x}+\mathrm{1}}{\mathrm{2}{x}}\:+{c} \\ $$$${A}=\mathrm{2}\:{arctan}\left(\sqrt{\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}}\right)\:+\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}}\:+{c} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Necxx last updated on 30/Oct/18
$${thank}\:{you}\:{so}\:{much}\:{sir}\:.\: \\ $$$${The}\:{issue}\:{now}\:{is}\:{that}\:{this}\:{answer} \\ $$$${is}\:{not}\:{in}\:{the}\:{option}.\:{Does}\:{it}\:{mean} \\ $$$${the}\:{options}\:{are}\:{all}\:{wrong}? \\ $$
Commented by maxmathsup by imad last updated on 30/Oct/18
$${yes}\:{there}\:{is}\:{some}\:{error}\:{in}\:{the}\:{given}\:{answers}\:{but}\:{always}\:{you}\:{must}\:{trust} \\ $$$${yourself}\:{and}\:{your}\:{method}… \\ $$
Commented by maxmathsup by imad last updated on 30/Oct/18
$$\left.\mathrm{16}\right)\:{let}\:\:{I}\:=\:\int\:\frac{{dx}}{\:\sqrt{{x}−{x}^{\mathrm{2}} }}\:\Rightarrow{I}\:=\int\:\:\frac{{dx}}{\:\sqrt{−\left({x}^{\mathrm{2}} −{x}\right)}}\:=\int\:\:\frac{{dx}}{\:\sqrt{−\left({x}^{\mathrm{2}} −\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}\right)}} \\ $$$$=\:\int\:\:\:\frac{{dx}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }}\:=_{{x}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}{sint}} \:\:\:\int\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}.\frac{\mathrm{1}}{\mathrm{2}}{cost}}\:{cost}\:{dt} \\ $$$$=\:\int\:{dt}\:={t}\:+{c}\:=\:{arcsin}\left(\mathrm{2}{x}−\mathrm{1}\right)\:+{c}\:\:{so}\:{option}\:\left({B}\right)\:{is}\:{the}\:{answer}. \\ $$
Commented by Necxx last updated on 30/Oct/18
$${wow}….\:{i}\:{solved}\:{this}\:{and}\:{got}\:{A}\:{as} \\ $$$${my}\:{answer} \\ $$$$ \\ $$