Question Number 46813 by peter frank last updated on 31/Oct/18

Commented by peter frank last updated on 02/Nov/18

Answered by ajfour last updated on 04/Nov/18
![eq. of asymptotes: tan θ=(y/x)=±(b/a) let eq. of line PQR : y=m(x−h)+k h=asec φ , k=btan φ m= tan α for x_Q : ((bx_Q )/a) = m(x_Q −h)+k ⇒ x_Q = ((k−mh)/((b/a)−m)) r_1 =(h−x_Q )sec α = (((((bh)/a)−k)/((b/a)−m)))sec α similarly r_2 =(h−x_R )sec α = (((((bh)/a)+k)/((b/a)+m)))sec α r_1 r_2 =[(((((bh)/a))^2 −k^2 )/(((b/a))^2 −m^2 ))]sec^2 α =[(((h^2 /a^2 )−(k^2 /b^2 ))/((1/a^2 )−(m^2 /b^2 )))](1+m^2 ) but P (h,k) lies on hyperbola so (h^2 /a^2 )−(k^2 /b^2 ) = 1 , hence ⇒ r_1 r_2 = ((a^2 b^2 (1+m^2 ))/(b^2 −a^2 m^2 )) .](https://www.tinkutara.com/question/Q47075.png)
Commented by peter frank last updated on 04/Nov/18

Answered by MrW3 last updated on 04/Nov/18

Commented by peter frank last updated on 04/Nov/18
