Menu Close

Question-46813




Question Number 46813 by peter frank last updated on 31/Oct/18
Commented by peter frank last updated on 02/Nov/18
help please
helpplease
Answered by ajfour last updated on 04/Nov/18
eq. of asymptotes:      tan θ=(y/x)=±(b/a)  let  eq. of line PQR :    y=m(x−h)+k       h=asec φ  , k=btan φ       m= tan α  for  x_Q  :    ((bx_Q )/a) = m(x_Q −h)+k  ⇒  x_Q  = ((k−mh)/((b/a)−m))  r_1 =(h−x_Q )sec α       = (((((bh)/a)−k)/((b/a)−m)))sec α  similarly  r_2 =(h−x_R )sec α      = (((((bh)/a)+k)/((b/a)+m)))sec α  r_1 r_2 =[(((((bh)/a))^2 −k^2 )/(((b/a))^2 −m^2 ))]sec^2 α       =[(((h^2 /a^2 )−(k^2 /b^2 ))/((1/a^2 )−(m^2 /b^2 )))](1+m^2 )  but P (h,k) lies on hyperbola  so   (h^2 /a^2 )−(k^2 /b^2 ) = 1 , hence  ⇒  r_1 r_2  = ((a^2 b^2 (1+m^2 ))/(b^2 −a^2 m^2 )) .
eq.ofasymptotes:tanθ=yx=±baleteq.oflinePQR:y=m(xh)+kh=asecϕ,k=btanϕm=tanαforxQ:bxQa=m(xQh)+kxQ=kmhbamr1=(hxQ)secα=(bhakbam)secαsimilarlyr2=(hxR)secα=(bha+kba+m)secαr1r2=[(bha)2k2(ba)2m2]sec2α=[h2a2k2b21a2m2b2](1+m2)butP(h,k)liesonhyperbolasoh2a2k2b2=1,hencer1r2=a2b2(1+m2)b2a2m2.
Commented by peter frank last updated on 04/Nov/18
thank you sir
thankyousir
Answered by MrW3 last updated on 04/Nov/18
let point P be (h,k)  (h^2 /a^2 )−(k^2 /b^2 )=1  line through point P with slope m:  y−k=m(x−h)    eqn. of asymptote 1:  y=−(b/a)x  y_q =−(b/a)x_q   y_q −k=m(x_q −h)  ⇒k=−(b/a)x_q −m(x_q −h)  ⇒((b/a)+m)x_q =mh−k  ⇒x_q =((a(mh−k))/(ma+b))  ⇒y_q =−((b(mh−k))/(ma+b))    eqn. of asymptote 2:  y=(b/a)x  y_r =(b/a)x_r   y_r −k=m(x_r −h)  ⇒k=(b/a)x_r −m(x_r −h)  ⇒((b/a)−m)x_r =−(mh−k)  ⇒x_r =((a(mh−k))/(am−b))  ⇒y_r =((b(mh−k))/(am−b))  QP=(√((x_q −h)^2 +(y_q −k)^2 ))=(√((((a(mh−k))/(ma+b))−h)^2 +(−((b(mh−k))/(ma+b))−k)^2 ))  ⇒QP=∣(((bh+ak)(√((1+m^2 ))))/(ma+b))∣  RP=(√((x_r −h)^2 +(y_r −k)^2 ))=(√((((a(mh−k))/(am−b))−h)^2 +(((b(mh−k))/(am−b))−k)^2 ))  ⇒RP=∣(((bh−ak)(√((1+m^2 ))))/(ma−b))∣  QP×RP=∣(((bh+ak)(√((1+m^2 ))))/(ma+b))×(((bh−ak)(√((1+m^2 ))))/(ma−b))∣  =∣(((b^2 h^2 −a^2 k^2 )(1+m^2 ))/(m^2 a^2 −b^2 ))∣  =∣((((h^2 /a^2 )−(k^2 /b^2 ))a^2 b^2 (1+m^2 ))/(m^2 a^2 −b^2 ))∣  =((a^2 b^2 (1+m^2 ))/(∣m^2 a^2 −b^2 ∣))
letpointPbe(h,k)h2a2k2b2=1linethroughpointPwithslopem:yk=m(xh)eqn.ofasymptote1:y=baxyq=baxqyqk=m(xqh)k=baxqm(xqh)(ba+m)xq=mhkxq=a(mhk)ma+byq=b(mhk)ma+beqn.ofasymptote2:y=baxyr=baxryrk=m(xrh)k=baxrm(xrh)(bam)xr=(mhk)xr=a(mhk)ambyr=b(mhk)ambQP=(xqh)2+(yqk)2=(a(mhk)ma+bh)2+(b(mhk)ma+bk)2QP=∣(bh+ak)(1+m2)ma+bRP=(xrh)2+(yrk)2=(a(mhk)ambh)2+(b(mhk)ambk)2RP=∣(bhak)(1+m2)mabQP×RP=∣(bh+ak)(1+m2)ma+b×(bhak)(1+m2)mab=∣(b2h2a2k2)(1+m2)m2a2b2=∣(h2a2k2b2)a2b2(1+m2)m2a2b2=a2b2(1+m2)m2a2b2
Commented by peter frank last updated on 04/Nov/18
mrW3.thank you
mrW3.thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *