Question Number 46978 by rahul 19 last updated on 03/Nov/18
Answered by MrW3 last updated on 03/Nov/18
$$\frac{{q}}{{p}}=\mathrm{4}−{p}\Rightarrow{p}=\mathrm{4}−\frac{{q}}{{p}} \\ $$$$\frac{{r}}{{q}}=\mathrm{4}−{q}\Rightarrow{q}=\mathrm{4}−\frac{{r}}{{q}} \\ $$$$\frac{{p}}{{r}}=\mathrm{4}−{r}\Rightarrow{r}=\mathrm{4}−\frac{{p}}{{r}} \\ $$$$\Rightarrow{p}+{q}+{r}=\mathrm{12}−\left(\frac{{q}}{{p}}+\frac{{r}}{{q}}+\frac{{p}}{{r}}\right)\leqslant\mathrm{12}−\mathrm{3}×\:^{\mathrm{3}} \sqrt{\frac{{q}}{{p}}×\frac{{r}}{{q}}×\frac{{p}}{{r}}}=\mathrm{12}−\mathrm{3}=\mathrm{9} \\ $$$$ \\ $$$$\left.\Rightarrow{answer}\:{C}\right)\:{is}\:{correct} \\ $$
Commented by rahul 19 last updated on 04/Nov/18
thanks sir
Answered by ajfour last updated on 03/Nov/18
$$\:\:\:{p}+{q}+{r}=\mathrm{4}\left({p}+{q}+{r}\right)−\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{3}\left({p}+{q}+{r}\right) \\ $$$$\:\:\:\:\:\:{for}\:{maximum}\:{p}+{q}+{r}\:\:\:\: \\ $$$${p}={q}={r}\:=\:{s}\:\:\left({say}\right);\:{then}\: \\ $$$$\:\:\mathrm{3}{s}^{\mathrm{2}} =\mathrm{9}{s}\:\:\Rightarrow\:\:{s}\:=\:\mathrm{0},\:\mathrm{3} \\ $$$$\left({p}+{q}+{r}\right)_{{max}} \:=\:\mathrm{3}{s}\:=\:\mathrm{9}\:. \\ $$
Commented by rahul 19 last updated on 04/Nov/18
thanks sir