Menu Close

Question-47088




Question Number 47088 by Meritguide1234 last updated on 04/Nov/18
Answered by MJS last updated on 04/Nov/18
x^2 +ax+b=0  x=−(a/2)±((√(a^2 −4b))/2) ⇒ α=−(a/2)−((√(a^2 −4b))/2); β=−(a/2)+((√(a^2 −4b))/(2())  bx^2 +ax+1=0  x=−(a/(2b))±((√(a^2 −4b))/(2b)); ⇒ γ=(α/b); δ=(β/b)  (((x^2 −1)ln x)/((x−α)(x−β)(x−γ)(x−δ)))=  =A((ln x)/(x−α))+B((ln x)/(x−β))+C((ln x)/(x−γ))+D((ln x)/(x−δ))  A=((α^2 −1)/((α−β)(α−γ)(α−δ)))  B=((β^2 −1)/((β−α)(β−γ)(β−δ)))  C=((γ^2 −1)/((γ−α)(γ−β)(γ−δ)))  D=((δ^2 −1)/((δ−α)(δ−β)(δ−γ)))    ∫((ln x)/(x−λ))dx=       [t=x−λ → dx=dt]  =∫((ln (t+λ))/t)dt=∫(((ln ((t+λ)/λ))/t)+((ln λ)/t))dt=  =∫((ln ((t+λ)/λ))/t)dt+ln λ ∫(dt/t)         ln λ ∫(dt/t)=ln λ ln t =ln λ ln ∣x−λ∣         ∫((ln ((t+λ)/λ))/t)dt=            [u=−(t/λ) → dt=−λdu]       =−∫−((ln (1−u))/u)du=            [Dilogarithm]       =−Li_2  u =−Li_2  −(t/λ) =−Li_2  ((λ−x)/λ)    ∫_0 ^1 ((ln x)/(x−λ))dx=[ln λ ln ∣x−λ∣ −Li_2  ((λ−x)/λ)]_0 ^1 =  =(π^2 /6)−ln^2  λ +ln (λ−1) ln λ −Li_2  ((λ−1)/λ)    sorry I′m too lazy to finish this, it should be  clear now anyway
x2+ax+b=0x=a2±a24b2α=a2a24b2;β=a2+a24b2(bx2+ax+1=0x=a2b±a24b2b;γ=αb;δ=βb(x21)lnx(xα)(xβ)(xγ)(xδ)==Alnxxα+Blnxxβ+Clnxxγ+DlnxxδA=α21(αβ)(αγ)(αδ)B=β21(βα)(βγ)(βδ)C=γ21(γα)(γβ)(γδ)D=δ21(δα)(δβ)(δγ)lnxxλdx=[t=xλdx=dt]=ln(t+λ)tdt=(lnt+λλt+lnλt)dt==lnt+λλtdt+lnλdttlnλdtt=lnλlnt=lnλlnxλlnt+λλtdt=[u=tλdt=λdu]=ln(1u)udu=[Dilogarithm]=Li2u=Li2tλ=Li2λxλ10lnxxλdx=[lnλlnxλLi2λxλ]01==π26ln2λ+ln(λ1)lnλLi2λ1λsorryImtoolazytofinishthis,itshouldbeclearnowanyway
Commented by Meritguide1234 last updated on 05/Nov/18

Leave a Reply

Your email address will not be published. Required fields are marked *