Menu Close

Question-47111




Question Number 47111 by peter frank last updated on 04/Nov/18
Commented by MrW3 last updated on 04/Nov/18
((4!/2!)/(7!/3!/2!))=((4!3!)/(7!))=((3×2×1)/(7×6×5))=(1/(35))
$$\frac{\mathrm{4}!/\mathrm{2}!}{\mathrm{7}!/\mathrm{3}!/\mathrm{2}!}=\frac{\mathrm{4}!\mathrm{3}!}{\mathrm{7}!}=\frac{\mathrm{3}×\mathrm{2}×\mathrm{1}}{\mathrm{7}×\mathrm{6}×\mathrm{5}}=\frac{\mathrm{1}}{\mathrm{35}} \\ $$
Commented by peter frank last updated on 05/Nov/18
sorry sir more explanation
$$\mathrm{sorry}\:\mathrm{sir}\:\mathrm{more}\:\mathrm{explanation} \\ $$
Commented by MrW3 last updated on 05/Nov/18
total number of ways to arrange 7  letters is 7!, but there are 3 letters M  and 2 letters I, therefore the total  number of different ways to arrange  the letters from MINIMUM is  ((7!)/(3!2!))=420  now we put MMM at begining and arrange  the rest 4 letters. to arrange 4 letters  there are 4! ways, but 2 letters I are   identical, so the number of different  ways to arrange the 4 letters INIU is  ((4!)/(2!))=12  thus the probabilty that MMM begins  is  (((4!)/(2!))/((7!)/(3!2!)))=((12)/(420))=(((4!3!)/(7!))=((3!)/(7×6×5))=((3×2×1)/(7×6×5)))=(1/(35))
$${total}\:{number}\:{of}\:{ways}\:{to}\:{arrange}\:\mathrm{7} \\ $$$${letters}\:{is}\:\mathrm{7}!,\:{but}\:{there}\:{are}\:\mathrm{3}\:{letters}\:{M} \\ $$$${and}\:\mathrm{2}\:{letters}\:{I},\:{therefore}\:{the}\:{total} \\ $$$${number}\:{of}\:{different}\:{ways}\:{to}\:{arrange} \\ $$$${the}\:{letters}\:{from}\:{MINIMUM}\:{is} \\ $$$$\frac{\mathrm{7}!}{\mathrm{3}!\mathrm{2}!}=\mathrm{420} \\ $$$${now}\:{we}\:{put}\:{MMM}\:{at}\:{begining}\:{and}\:{arrange} \\ $$$${the}\:{rest}\:\mathrm{4}\:{letters}.\:{to}\:{arrange}\:\mathrm{4}\:{letters} \\ $$$${there}\:{are}\:\mathrm{4}!\:{ways},\:{but}\:\mathrm{2}\:{letters}\:{I}\:{are}\: \\ $$$${identical},\:{so}\:{the}\:{number}\:{of}\:{different} \\ $$$${ways}\:{to}\:{arrange}\:{the}\:\mathrm{4}\:{letters}\:{INIU}\:{is} \\ $$$$\frac{\mathrm{4}!}{\mathrm{2}!}=\mathrm{12} \\ $$$${thus}\:{the}\:{probabilty}\:{that}\:{MMM}\:{begins} \\ $$$${is} \\ $$$$\frac{\frac{\mathrm{4}!}{\mathrm{2}!}}{\frac{\mathrm{7}!}{\mathrm{3}!\mathrm{2}!}}=\frac{\mathrm{12}}{\mathrm{420}}=\left(\frac{\mathrm{4}!\mathrm{3}!}{\mathrm{7}!}=\frac{\mathrm{3}!}{\mathrm{7}×\mathrm{6}×\mathrm{5}}=\frac{\mathrm{3}×\mathrm{2}×\mathrm{1}}{\mathrm{7}×\mathrm{6}×\mathrm{5}}\right)=\frac{\mathrm{1}}{\mathrm{35}} \\ $$
Commented by peter frank last updated on 05/Nov/18
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *