Menu Close

Question-47145




Question Number 47145 by ajfour last updated on 05/Nov/18
Commented by ajfour last updated on 05/Nov/18
Q.47113   Find volume of  pyramid in terms of a,b,c,p,q,r.
$${Q}.\mathrm{47113}\:\:\:{Find}\:{volume}\:{of} \\ $$$${pyramid}\:{in}\:{terms}\:{of}\:{a},{b},{c},{p},{q},{r}. \\ $$
Answered by ajfour last updated on 05/Nov/18
let A be origin.  B(ccos φ,−csin φ,0)  C(bcos θ,bsin φ,0)  H(x,0,h)       x^2 +h^2 =p^2   ...(i)  (x−bcos θ)^2 +b^2 sin^2 θ+z^2  = r^2   ..(ii)  (x−ccos φ)^2 +c^2 sin^2 φ+z^2 = q^2   ..(iii)  (ccos φ−bcos θ)^2 +(bsin θ+csin φ)^2 =a^2   ..(iv)  (i)−(ii) ⇒     2bxcos θ = p^2 +b^2 −r^2  = l   ...(I)  (iii) ⇒     2cxcos φ = p^2 +c^2 −q^2  =m  ...(II)  (iv) ⇒    2bc(cos θcos φ−sin θsin φ)                  = b^2 +c^2 −a^2   = n    ...(III)  ⇒  ((lm)/(2x^2 ))−2bc(√((1−(l^2 /(4b^2 x^2 )))(1−(m^2 /(4c^2 x^2 ))))) = n  ⇒ (((lm)/(2x^2 ))−n)^2 =(1/4)(4b^2 −(l^2 /x^2 ))(4c^2 −(m^2 /x^2 ))  (lm−2nx^2 )^2 =(4b^2 x^2 −l^2 )(4c^2 x^2 −m^2 )  ⇒  4n^2 x^4 −4lmnx^2             = 16b^2 c^2 x^4 −4x^2 (c^2 l^2 +b^2 m^2 )  ⇒ x^2  = ((b^2 m^2 +c^2 l^2 −lmn)/(4b^2 c^2 −n^2 ))    and  h^2  = p^2 −x^2     Volume = (h/3)S_(ABC)    (may be).
$${let}\:{A}\:{be}\:{origin}. \\ $$$${B}\left({c}\mathrm{cos}\:\phi,−{c}\mathrm{sin}\:\phi,\mathrm{0}\right) \\ $$$${C}\left({b}\mathrm{cos}\:\theta,{b}\mathrm{sin}\:\phi,\mathrm{0}\right) \\ $$$${H}\left({x},\mathrm{0},{h}\right) \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} +{h}^{\mathrm{2}} ={p}^{\mathrm{2}} \:\:…\left({i}\right) \\ $$$$\left({x}−{b}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+{z}^{\mathrm{2}} \:=\:{r}^{\mathrm{2}} \:\:..\left({ii}\right) \\ $$$$\left({x}−{c}\mathrm{cos}\:\phi\right)^{\mathrm{2}} +{c}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \phi+{z}^{\mathrm{2}} =\:{q}^{\mathrm{2}} \:\:..\left({iii}\right) \\ $$$$\left({c}\mathrm{cos}\:\phi−{b}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\left({b}\mathrm{sin}\:\theta+{c}\mathrm{sin}\:\phi\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \:\:..\left({iv}\right) \\ $$$$\left({i}\right)−\left({ii}\right)\:\Rightarrow \\ $$$$\:\:\:\mathrm{2}{bx}\mathrm{cos}\:\theta\:=\:{p}^{\mathrm{2}} +{b}^{\mathrm{2}} −{r}^{\mathrm{2}} \:=\:{l}\:\:\:…\left({I}\right) \\ $$$$\left({iii}\right)\:\Rightarrow \\ $$$$\:\:\:\mathrm{2}{cx}\mathrm{cos}\:\phi\:=\:{p}^{\mathrm{2}} +{c}^{\mathrm{2}} −{q}^{\mathrm{2}} \:={m}\:\:…\left({II}\right) \\ $$$$\left({iv}\right)\:\Rightarrow \\ $$$$\:\:\mathrm{2}{bc}\left(\mathrm{cos}\:\theta\mathrm{cos}\:\phi−\mathrm{sin}\:\theta\mathrm{sin}\:\phi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} \:\:=\:{n}\:\:\:\:…\left({III}\right) \\ $$$$\Rightarrow\:\:\frac{{lm}}{\mathrm{2}{x}^{\mathrm{2}} }−\mathrm{2}{bc}\sqrt{\left(\mathrm{1}−\frac{{l}^{\mathrm{2}} }{\mathrm{4}{b}^{\mathrm{2}} {x}^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{m}^{\mathrm{2}} }{\mathrm{4}{c}^{\mathrm{2}} {x}^{\mathrm{2}} }\right)}\:=\:{n} \\ $$$$\Rightarrow\:\left(\frac{{lm}}{\mathrm{2}{x}^{\mathrm{2}} }−{n}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{4}{b}^{\mathrm{2}} −\frac{{l}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)\left(\mathrm{4}{c}^{\mathrm{2}} −\frac{{m}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right) \\ $$$$\left({lm}−\mathrm{2}{nx}^{\mathrm{2}} \right)^{\mathrm{2}} =\left(\mathrm{4}{b}^{\mathrm{2}} {x}^{\mathrm{2}} −{l}^{\mathrm{2}} \right)\left(\mathrm{4}{c}^{\mathrm{2}} {x}^{\mathrm{2}} −{m}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\mathrm{4}{n}^{\mathrm{2}} {x}^{\mathrm{4}} −\mathrm{4}{lmnx}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\mathrm{16}{b}^{\mathrm{2}} {c}^{\mathrm{2}} {x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{2}} \left({c}^{\mathrm{2}} {l}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} \:=\:\frac{{b}^{\mathrm{2}} {m}^{\mathrm{2}} +{c}^{\mathrm{2}} {l}^{\mathrm{2}} −{lmn}}{\mathrm{4}{b}^{\mathrm{2}} {c}^{\mathrm{2}} −{n}^{\mathrm{2}} } \\ $$$$\:\:{and}\:\:\boldsymbol{{h}}^{\mathrm{2}} \:=\:\boldsymbol{{p}}^{\mathrm{2}} −\boldsymbol{{x}}^{\mathrm{2}} \\ $$$$\:\:{Volume}\:=\:\frac{\boldsymbol{{h}}}{\mathrm{3}}\boldsymbol{{S}}_{{ABC}} \:\:\:\left({may}\:{be}\right). \\ $$
Commented by MrW3 last updated on 05/Nov/18
thank you for this method, sir. it  shows how to calculate the height of  pyramid.
$${thank}\:{you}\:{for}\:{this}\:{method},\:{sir}.\:{it} \\ $$$${shows}\:{how}\:{to}\:{calculate}\:{the}\:{height}\:{of} \\ $$$${pyramid}. \\ $$
Commented by ajfour last updated on 05/Nov/18
Will this do Sir ?
$${Will}\:{this}\:{do}\:{Sir}\:? \\ $$
Commented by ajfour last updated on 05/Nov/18
isn′t    V=(h/3)S_(ABC)     correct ?
$${isn}'{t}\:\:\:\:{V}=\frac{{h}}{\mathrm{3}}{S}_{{ABC}} \:\:\:\:{correct}\:? \\ $$
Commented by MrW3 last updated on 05/Nov/18
it is correct sir.
$${it}\:{is}\:{correct}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *