Question Number 47342 by ajfour last updated on 08/Nov/18
Commented by ajfour last updated on 08/Nov/18
$${Find}\:{the}\:{Tension}\:{in}\:{rope}\left({light}\right)\:{if}\: \\ $$$${all}\:{surfaces}\:{are}\:{frictioness}. \\ $$
Answered by MrW3 last updated on 08/Nov/18
$${a}_{\mathrm{1}} ={acceleration}\:{of}\:{wedge}\:\left(\rightarrow\right) \\ $$$${a}_{\mathrm{2}} ={acceleration}\:{of}\:{small}\:{block}\:{on}\:{ground}\:\left(\leftarrow\right) \\ $$$${a}_{\mathrm{3}} ={acceleration}\:{of}\:{small}\:{block}\:{on}\:{wedge}\:\left(\swarrow\right) \\ $$$${a}_{\mathrm{3}} ={a}_{\mathrm{1}} +{a}_{\mathrm{2}} \\ $$$${T}={m}_{{o}} {a}_{\mathrm{2}} \\ $$$${mg}\:\mathrm{sin}\:\beta−{T}={m}\left({a}_{\mathrm{3}} −{a}_{\mathrm{1}} \mathrm{cos}\:\beta\right)={m}\left[\left(\mathrm{1}−\mathrm{cos}\:\beta\right){a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right] \\ $$$${mg}\:\mathrm{cos}\:\beta−{N}={ma}_{\mathrm{1}} \mathrm{sin}\:\beta \\ $$$$\Rightarrow{N}={m}\left({g}\:\mathrm{cos}\:\beta−{a}_{\mathrm{1}} \mathrm{sin}\:\beta\right) \\ $$$${T}−{T}\:\mathrm{cos}\:\beta+{N}\:\mathrm{sin}\:\beta={Ma}_{\mathrm{1}} \\ $$$${T}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)+{m}\left({g}\:\mathrm{cos}\:\beta−{a}_{\mathrm{1}} \mathrm{sin}\:\beta\right)\mathrm{sin}\:\beta={Ma}_{\mathrm{1}} \\ $$$${m}_{\mathrm{0}} {a}_{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\beta\right)+{m}\left({g}\:\mathrm{cos}\:\beta−{a}_{\mathrm{1}} \mathrm{sin}\:\beta\right)\mathrm{sin}\:\beta={Ma}_{\mathrm{1}} \\ $$$$\Rightarrow\left({M}+{m}\:\mathrm{sin}^{\mathrm{2}} \:\beta\right){a}_{\mathrm{1}} −{m}_{\mathrm{0}} \left(\mathrm{1}−\mathrm{cos}\:\beta\right){a}_{\mathrm{2}} ={mg}\:\mathrm{cos}\:\beta\mathrm{sin}\:\beta\:\:\:…\left({i}\right) \\ $$$$\Rightarrow{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right){a}_{\mathrm{1}} +\left({m}+{m}_{\mathrm{0}} \right){a}_{\mathrm{2}} ={mg}\:\mathrm{sin}\:\beta\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$$\Rightarrow\left[\left({m}+{m}_{\mathrm{0}} \right)\left({M}+{m}\:\mathrm{sin}^{\mathrm{2}} \:\beta\right)+{m}_{\mathrm{0}} {m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)^{\mathrm{2}} \right]{a}_{\mathrm{2}} ={mg}\:\mathrm{sin}\:\beta\left[{M}+{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right] \\ $$$$\Rightarrow{a}_{\mathrm{2}} =\frac{{mg}\:\mathrm{sin}\:\beta\left[{M}+{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right]}{\left({m}+{m}_{\mathrm{0}} \right)\left({M}+{m}\:\mathrm{sin}^{\mathrm{2}} \:\beta\right)+{m}_{\mathrm{0}} {m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{T}=\frac{{m}_{\mathrm{0}} {m}\left[{M}+{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right]{g}\:\mathrm{sin}\:\beta}{\left({m}+{m}_{\mathrm{0}} \right)\left({M}+{m}\:\mathrm{sin}^{\mathrm{2}} \:\beta\right)+{m}_{\mathrm{0}} {m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)^{\mathrm{2}} } \\ $$
Commented by ajfour last updated on 09/Nov/18
$${If}\:{m}=\mathrm{1}{kg}\:,\:{m}_{\mathrm{0}} =\:\mathrm{2}{kg}\:,\:{M}=\mathrm{3}{kg}, \\ $$$$\:\:{and}\:\beta\:=\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{3}},\:{then}\:{with}\: \\ $$$$\:{g}=\:\mathrm{10}{m}/{s}^{\mathrm{2}} \:;\:{your}\:{eq}.\:{yields} \\ $$$${T}=\:\frac{\mathrm{2}\left(\mathrm{3}+\frac{\mathrm{2}}{\mathrm{5}}\right)×\frac{\mathrm{40}}{\mathrm{5}}}{\mathrm{3}\left(\mathrm{3}+\frac{\mathrm{16}}{\mathrm{25}}\right)+\mathrm{2}×\frac{\mathrm{4}}{\mathrm{25}}}\:=\:\frac{\mathrm{80}×\mathrm{17}}{\mathrm{281}}\:{N}\:. \\ $$$$ \\ $$
Commented by ajfour last updated on 09/Nov/18
$${Thank}\:{you}\:{Sir}. \\ $$
Answered by ajfour last updated on 09/Nov/18
$${T}=\left({M}+{m}\right){A}−{m}\left({A}+{a}_{\mathrm{0}} \right)\mathrm{cos}\:\beta \\ $$$$\:\:\:=\:{m}_{\mathrm{0}} {a}_{\mathrm{0}} \\ $$$${mg}\mathrm{sin}\:\beta−{T}\:=\:{m}\left[\left({A}+{a}_{\mathrm{0}} \right)−{A}\mathrm{cos}\:\beta\right] \\ $$$${Adding} \\ $$$$\Rightarrow\:{mg}\mathrm{sin}\:\beta={ma}_{\mathrm{0}} \left(\mathrm{1}−\mathrm{cos}\:\beta\right)+{MA} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2}{mA}\left(\mathrm{1}−\mathrm{cos}\:\beta\right) \\ $$$$\Rightarrow\:{mg}\mathrm{sin}\:\beta={ma}_{\mathrm{0}} \left(\mathrm{1}−\mathrm{cos}\:\beta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+{A}\left[{M}+\mathrm{2}{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right] \\ $$$$ \\ $$$$\Rightarrow\:{mg}\mathrm{sin}\:\beta={ma}_{\mathrm{0}} \left(\mathrm{1}−\mathrm{cos}\:\beta\right) \\ $$$$\:\:\:+\frac{{a}_{\mathrm{0}} \left({m}_{\mathrm{0}} +{m}\mathrm{cos}\:\beta\right)\left[{M}+\mathrm{2}{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right.}{{M}+{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)} \\ $$$$ \\ $$$${a}_{\mathrm{0}} =\frac{{mg}\mathrm{sin}\:\beta\left[{M}+{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right]}{{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\left[{M}+{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right]+\left({m}_{\mathrm{0}} +{m}\mathrm{cos}\:\beta\right)\left[{M}+\mathrm{2}{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right]} \\ $$$${T}=\:\frac{{mm}_{\mathrm{0}} {g}\mathrm{sin}\:\beta\left[{M}+{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right]}{{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\left[{M}+{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right]+\left({m}_{\mathrm{0}} +{m}\mathrm{cos}\:\beta\right)\left[{M}+\mathrm{2}{m}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)\right]} \\ $$$${If}\:{m}=\mathrm{1}{kg}\:\:,\:{m}_{\mathrm{0}} =\:\mathrm{2}{kg}\:,\:{M}=\mathrm{3}{kg} \\ $$$$\:\:{and}\:\:\beta\:=\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{3}} \\ $$$${T}\:=\:\frac{\mathrm{20}×\frac{\mathrm{4}}{\mathrm{5}}\left(\mathrm{3}+\frac{\mathrm{2}}{\mathrm{5}}\right)}{\frac{\mathrm{2}}{\mathrm{5}}\left(\mathrm{3}+\frac{\mathrm{2}}{\mathrm{5}}\right)+\left(\mathrm{2}+\frac{\mathrm{3}}{\mathrm{5}}\right)\left(\mathrm{3}+\frac{\mathrm{4}}{\mathrm{5}}\right)} \\ $$$$\:\:\:\:=\:\frac{\mathrm{80}×\mathrm{17}}{\mathrm{34}+\mathrm{13}×\mathrm{19}}\:=\:\frac{\mathrm{80}×\mathrm{17}}{\mathrm{281}}\:{N}\:. \\ $$$$ \\ $$