Question-47407 Tinku Tara June 4, 2023 Geometry 0 Comments FacebookTweetPin Question Number 47407 by ajfour last updated on 09/Nov/18 Answered by ajfour last updated on 10/Nov/18 letBD=x,∠A=ϕ,∠C=θSABCD=absinθ2+cdsinϕ2x2=a2+b2−2abcosθ=c2+d2−2cdcosϕ⇒(absinθ)dθdx=(cdsinϕ)dϕdx=2xdSdx=0⇒(abcosθ)dθdx+(cdcosϕ)dϕdx=0⇒cosθ+(cosϕ)(sinθsinϕ)=0⇒θ+ϕ=π⇒a2+b2−2abcosθ=c2+d2+2cdcosθorcosθ=a2+b2−c2−d22(ab+cd)(SABCD)max=sinθ2(ab+cd)=(ab+cd)21−[a2+b2−c2−d22(ab+cd)]2Smax=144(ab+cd)2−[(a2+b2)−(c2+d2)]2. Commented by mr W last updated on 10/Nov/18 thankyousir!itshowstheareareachesmaximumwhenthequadrilateralisinscribedinacircle. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-47401Next Next post: Reduce-2n-1-3-5-2n-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.