Menu Close

Question-47407




Question Number 47407 by ajfour last updated on 09/Nov/18
Answered by ajfour last updated on 10/Nov/18
let BD = x , ∠A = φ, ∠C = θ  S_(ABCD)  = ((absin θ)/2)+((cdsin φ)/2)  x^2 = a^2 +b^2 −2abcos θ      = c^2 +d^2 −2cdcos φ  ⇒ (absin θ)(dθ/dx) = (cdsin φ)(dφ/dx) = 2x  (dS/dx) = 0 ⇒     (abcos θ)(dθ/dx)+(cdcos φ)(dφ/dx)=0  ⇒ cos θ+(cos φ)(((sin θ)/(sin φ)))= 0  ⇒  θ+φ = π  ⇒ a^2 +b^2 −2abcos θ                      = c^2 +d^2 +2cdcos θ  or    cos θ = ((a^2 +b^2 −c^2 −d^2 )/(2(ab+cd)))  (S_(ABCD) )_(max)  = ((sin θ)/2)(ab+cd)           = (((ab+cd))/2)(√(1−[((a^2 +b^2 −c^2 −d^2 )/(2(ab+cd)))]^2 ))     S_(max) = (1/4)(√(4(ab+cd)^2 −[(a^2 +b^2 )−(c^2 +d^2 )]^2 )) .
letBD=x,A=ϕ,C=θSABCD=absinθ2+cdsinϕ2x2=a2+b22abcosθ=c2+d22cdcosϕ(absinθ)dθdx=(cdsinϕ)dϕdx=2xdSdx=0(abcosθ)dθdx+(cdcosϕ)dϕdx=0cosθ+(cosϕ)(sinθsinϕ)=0θ+ϕ=πa2+b22abcosθ=c2+d2+2cdcosθorcosθ=a2+b2c2d22(ab+cd)(SABCD)max=sinθ2(ab+cd)=(ab+cd)21[a2+b2c2d22(ab+cd)]2Smax=144(ab+cd)2[(a2+b2)(c2+d2)]2.
Commented by mr W last updated on 10/Nov/18
thank you sir!  it shows the area reaches maximum  when the quadrilateral is inscribed in  a circle.
thankyousir!itshowstheareareachesmaximumwhenthequadrilateralisinscribedinacircle.

Leave a Reply

Your email address will not be published. Required fields are marked *