Menu Close

Question-47422




Question Number 47422 by ajfour last updated on 09/Nov/18
Commented by ajfour last updated on 09/Nov/18
A vertical ellipsoid shell of  frictionless surface holds a  flexible rope ring of mass m,  radius R. Find the tension in   the rope.
Averticalellipsoidshelloffrictionlesssurfaceholdsaflexibleroperingofmassm,radiusR.Findthetensionintherope.
Answered by MrW3 last updated on 09/Nov/18
eqn. of ellipse:  (x^2 /b^2 )+(y^2 /a^2 )=1  (x/b^2 )+(y/a^z )y′=0  at x=R:  (R/b^2 )+(k/a^2 )tan θ=0  (R^2 /b^2 )+(k^2 /a^2 )=1  ⇒(R^2 /b^2 )+(1/a^2 )(−((a^2 R)/(b^2 tan θ)))^2 =1  a^2 R^2 ×(1/(tan^2  θ))=b^2 (b^2 −R^2 )  a^2 R^2 ×(1/(tan^2  θ))=b^2 (b^2 −R^2 )  tan^2  θ=((a^2 R^2 )/(b^2 (b^2 −R^2 )))  ⇒tan θ=(a/b)×((R/b)/( (√(1−(R^2 /b^2 )))))  (T/R)=ρg tan θ=((mg)/(2πR))×(a/b)×((R/b)/( (√(1−(R^2 /b^2 )))))  ⇒T=((mg)/(2π))×(a/b)×((R/b)/( (√(1−(R^2 /b^2 )))))
eqn.ofellipse:x2b2+y2a2=1xb2+yazy=0atx=R:Rb2+ka2tanθ=0R2b2+k2a2=1R2b2+1a2(a2Rb2tanθ)2=1a2R2×1tan2θ=b2(b2R2)a2R2×1tan2θ=b2(b2R2)tan2θ=a2R2b2(b2R2)tanθ=ab×Rb1R2b2TR=ρgtanθ=mg2πR×ab×Rb1R2b2T=mg2π×ab×Rb1R2b2
Commented by ajfour last updated on 09/Nov/18
Thank you Sir.
ThankyouSir.

Leave a Reply

Your email address will not be published. Required fields are marked *