Menu Close

Question-47422




Question Number 47422 by ajfour last updated on 09/Nov/18
Commented by ajfour last updated on 09/Nov/18
A vertical ellipsoid shell of  frictionless surface holds a  flexible rope ring of mass m,  radius R. Find the tension in   the rope.
$${A}\:{vertical}\:{ellipsoid}\:{shell}\:{of} \\ $$$${frictionless}\:{surface}\:{holds}\:{a} \\ $$$${flexible}\:{rope}\:{ring}\:{of}\:{mass}\:{m}, \\ $$$${radius}\:{R}.\:{Find}\:{the}\:{tension}\:{in}\: \\ $$$${the}\:{rope}. \\ $$
Answered by MrW3 last updated on 09/Nov/18
eqn. of ellipse:  (x^2 /b^2 )+(y^2 /a^2 )=1  (x/b^2 )+(y/a^z )y′=0  at x=R:  (R/b^2 )+(k/a^2 )tan θ=0  (R^2 /b^2 )+(k^2 /a^2 )=1  ⇒(R^2 /b^2 )+(1/a^2 )(−((a^2 R)/(b^2 tan θ)))^2 =1  a^2 R^2 ×(1/(tan^2  θ))=b^2 (b^2 −R^2 )  a^2 R^2 ×(1/(tan^2  θ))=b^2 (b^2 −R^2 )  tan^2  θ=((a^2 R^2 )/(b^2 (b^2 −R^2 )))  ⇒tan θ=(a/b)×((R/b)/( (√(1−(R^2 /b^2 )))))  (T/R)=ρg tan θ=((mg)/(2πR))×(a/b)×((R/b)/( (√(1−(R^2 /b^2 )))))  ⇒T=((mg)/(2π))×(a/b)×((R/b)/( (√(1−(R^2 /b^2 )))))
$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{{b}^{\mathrm{2}} }+\frac{{y}}{{a}^{{z}} }{y}'=\mathrm{0} \\ $$$${at}\:{x}={R}: \\ $$$$\frac{{R}}{{b}^{\mathrm{2}} }+\frac{{k}}{{a}^{\mathrm{2}} }\mathrm{tan}\:\theta=\mathrm{0} \\ $$$$\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\left(−\frac{{a}^{\mathrm{2}} {R}}{{b}^{\mathrm{2}} \mathrm{tan}\:\theta}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${a}^{\mathrm{2}} {R}^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\theta}={b}^{\mathrm{2}} \left({b}^{\mathrm{2}} −{R}^{\mathrm{2}} \right) \\ $$$${a}^{\mathrm{2}} {R}^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\theta}={b}^{\mathrm{2}} \left({b}^{\mathrm{2}} −{R}^{\mathrm{2}} \right) \\ $$$$\mathrm{tan}^{\mathrm{2}} \:\theta=\frac{{a}^{\mathrm{2}} {R}^{\mathrm{2}} }{{b}^{\mathrm{2}} \left({b}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{{a}}{{b}}×\frac{\frac{{R}}{{b}}}{\:\sqrt{\mathrm{1}−\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}} \\ $$$$\frac{{T}}{{R}}=\rho{g}\:\mathrm{tan}\:\theta=\frac{{mg}}{\mathrm{2}\pi{R}}×\frac{{a}}{{b}}×\frac{\frac{{R}}{{b}}}{\:\sqrt{\mathrm{1}−\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}} \\ $$$$\Rightarrow{T}=\frac{{mg}}{\mathrm{2}\pi}×\frac{{a}}{{b}}×\frac{\frac{{R}}{{b}}}{\:\sqrt{\mathrm{1}−\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}} \\ $$
Commented by ajfour last updated on 09/Nov/18
Thank you Sir.
$${Thank}\:{you}\:{Sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *