Question Number 47425 by ajfour last updated on 09/Nov/18
Commented by ajfour last updated on 09/Nov/18
$${Find}\:{b}\:{if}\:{a}=\mathrm{1}\:{and}\:\bigtriangleup{ABC}\:{has} \\ $$$${minimum}\:{area}. \\ $$
Answered by mr W last updated on 09/Nov/18
$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${let}\:\mathrm{tan}\:\alpha=\frac{{b}}{{a}} \\ $$$${eqn}.\:{of}\:{BA}: \\ $$$${y}=\frac{{b}}{{a}}{x}+{b} \\ $$$${eqn}.\:{of}\:{BC}: \\ $$$${y}=−\frac{{a}}{{b}}{x} \\ $$$${A}\left({a},{y}_{{A}} \right),{C}\left({a},{y}_{{C}} \right) \\ $$$${y}_{{A}} =\frac{{b}}{{a}}{a}+{b}=\mathrm{2}{b} \\ $$$${y}_{{C}} =−\frac{{a}}{{b}}{a}=−\frac{{a}^{\mathrm{2}} }{{b}} \\ $$$${AC}={y}_{{A}} −{y}_{{C}} =\mathrm{2}{b}+\frac{{a}^{\mathrm{2}} }{{b}}=\frac{{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} }{{b}} \\ $$$${S}_{{ABC}} =\frac{{AC}^{\mathrm{2}} \mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha}{\mathrm{2}}=\frac{\left({a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} \right)^{\mathrm{2}} {ab}}{\mathrm{2}{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$${with}\:\lambda=\frac{{b}}{{a}} \\ $$$${S}_{{ABC}} =\frac{\left(\mathrm{1}+\mathrm{2}\lambda^{\mathrm{2}} \right)^{\mathrm{2}} {a}^{\mathrm{2}} }{\mathrm{2}\lambda\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)} \\ $$$$\frac{{dS}}{{d}\lambda}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\frac{\mathrm{8}\left(\mathrm{1}+\mathrm{2}\lambda^{\mathrm{2}} \right)}{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)}−\frac{\left(\mathrm{1}+\mathrm{2}\lambda^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3}\lambda^{\mathrm{2}} \right)}{\lambda^{\mathrm{2}} \left(\mathrm{1}+\lambda^{\mathrm{2}} \right)^{\mathrm{2}} }\right]=\mathrm{0} \\ $$$$\mathrm{8}\lambda^{\mathrm{2}} \left(\mathrm{1}+\lambda^{\mathrm{2}} \right)−\left(\mathrm{1}+\mathrm{2}\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{3}\lambda^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{2}\lambda^{\mathrm{4}} +\mathrm{3}\lambda^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\lambda^{\mathrm{2}} =\frac{\sqrt{\mathrm{17}}−\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\lambda=\frac{{b}}{{a}}=\frac{\sqrt{\sqrt{\mathrm{17}}−\mathrm{3}}}{\mathrm{2}}\approx\mathrm{0}.\mathrm{5299} \\ $$$$\Rightarrow{b}\approx\mathrm{0}.\mathrm{5299} \\ $$
Commented by ajfour last updated on 10/Nov/18
$${Very}\:{Nice},\:{Sir}! \\ $$