Menu Close

Question-47508




Question Number 47508 by naka3546 last updated on 11/Nov/18
Commented by gunawan last updated on 11/Nov/18
xyz=1  xy=(1/z)  x+xy=5  x(1+y)=5  x=(5/(1+y))  y+((1+y)/5)=29  5y+1+y=29×5  6y=145−1  y=((144)/6)=24  so  (1/x)=5  (1/5)+(1/z)=5  (1/z)=((24)/5)  z+(1/y)=(5/(24))+(1/(24))  m=1  n=4  m+n=5
$${xyz}=\mathrm{1} \\ $$$${xy}=\frac{\mathrm{1}}{{z}} \\ $$$${x}+{xy}=\mathrm{5} \\ $$$${x}\left(\mathrm{1}+{y}\right)=\mathrm{5} \\ $$$${x}=\frac{\mathrm{5}}{\mathrm{1}+{y}} \\ $$$${y}+\frac{\mathrm{1}+{y}}{\mathrm{5}}=\mathrm{29} \\ $$$$\mathrm{5}{y}+\mathrm{1}+{y}=\mathrm{29}×\mathrm{5} \\ $$$$\mathrm{6}{y}=\mathrm{145}−\mathrm{1} \\ $$$${y}=\frac{\mathrm{144}}{\mathrm{6}}=\mathrm{24} \\ $$$${so} \\ $$$$\frac{\mathrm{1}}{{x}}=\mathrm{5} \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{{z}}=\mathrm{5} \\ $$$$\frac{\mathrm{1}}{{z}}=\frac{\mathrm{24}}{\mathrm{5}} \\ $$$${z}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{5}}{\mathrm{24}}+\frac{\mathrm{1}}{\mathrm{24}} \\ $$$${m}=\mathrm{1}\:\:{n}=\mathrm{4} \\ $$$${m}+{n}=\mathrm{5} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *