Menu Close

Question-47659




Question Number 47659 by behi83417@gmail.com last updated on 12/Nov/18
Answered by ajfour last updated on 13/Nov/18
Eq. of tangent:  ((xx_1 )/a^2 )+((yy_1 )/b^2 )=1  A((a^2 /x_1 ),0)   ; B(0,(b^2 /y_1 ))  Area △AOB = ((a^2 b^2 )/(2∣x_1 y_1 ∣))     with  (x_1 ^2 /a^2 )+(y_1 ^2 /b^2 )=1  So Area △AOB = ((a^2 b)/(2∣x_1 ∣(√(1−(x_1 ^2 /a^2 )))))                 = ((a^3 b)/(2(√(x_1 ^2 (a^2 −x_1 ^2 )))))   with   x_1 ∈(−a,a) .
$${Eq}.\:{of}\:{tangent}: \\ $$$$\frac{{xx}_{\mathrm{1}} }{{a}^{\mathrm{2}} }+\frac{{yy}_{\mathrm{1}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${A}\left(\frac{{a}^{\mathrm{2}} }{{x}_{\mathrm{1}} },\mathrm{0}\right)\:\:\:;\:{B}\left(\mathrm{0},\frac{{b}^{\mathrm{2}} }{{y}_{\mathrm{1}} }\right) \\ $$$${Area}\:\bigtriangleup{AOB}\:=\:\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{\mathrm{2}\mid{x}_{\mathrm{1}} {y}_{\mathrm{1}} \mid} \\ $$$$\:\:\:{with}\:\:\frac{{x}_{\mathrm{1}} ^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}_{\mathrm{1}} ^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${So}\:{Area}\:\bigtriangleup{AOB}\:=\:\frac{{a}^{\mathrm{2}} {b}}{\mathrm{2}\mid{x}_{\mathrm{1}} \mid\sqrt{\mathrm{1}−\frac{{x}_{\mathrm{1}} ^{\mathrm{2}} }{{a}^{\mathrm{2}} }}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{{a}^{\mathrm{3}} {b}}{\mathrm{2}\sqrt{{x}_{\mathrm{1}} ^{\mathrm{2}} \left({a}^{\mathrm{2}} −{x}_{\mathrm{1}} ^{\mathrm{2}} \right)}}\: \\ $$$${with}\:\:\:{x}_{\mathrm{1}} \in\left(−{a},{a}\right)\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Nov/18
tangent at (acosθ,bsinθ)  ((x×acosθ)/a^2 )+((y×bsinθ)/b^2 )=1  (x/(a/(cosθ)))+(y/(b/(sinθ)))=1  A((a/(cosθ)),0)   B(0,(b/(sinθ)))  area triangle OAB=(1/2)×(a/(cosθ))×(b/(sinθ))=((ab)/(sin2θ))
$${tangent}\:{at}\:\left({acos}\theta,{bsin}\theta\right) \\ $$$$\frac{{x}×{acos}\theta}{{a}^{\mathrm{2}} }+\frac{{y}×{bsin}\theta}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{\frac{{a}}{{cos}\theta}}+\frac{{y}}{\frac{{b}}{{sin}\theta}}=\mathrm{1} \\ $$$${A}\left(\frac{{a}}{{cos}\theta},\mathrm{0}\right)\:\:\:{B}\left(\mathrm{0},\frac{{b}}{{sin}\theta}\right) \\ $$$${area}\:{triangle}\:{OAB}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{{a}}{{cos}\theta}×\frac{{b}}{{sin}\theta}=\frac{{ab}}{{sin}\mathrm{2}\theta} \\ $$$$\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *