Menu Close

Question-47815




Question Number 47815 by tanmay.chaudhury50@gmail.com last updated on 15/Nov/18
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Nov/18
basic question  1)fig a  is it accelarated or deaccelarated motion  2)fig b accelarated/deaccelarated motion  3)fig(a) particle moving towards origin or away  4)fig b particle moving towards origin or away  questions for 10+2 students...
$${basic}\:{question} \\ $$$$\left.\mathrm{1}\right){fig}\:{a}\:\:{is}\:{it}\:{accelarated}\:{or}\:{deaccelarated}\:{motion} \\ $$$$\left.\mathrm{2}\right){fig}\:{b}\:{accelarated}/{deaccelarated}\:{motion} \\ $$$$\left.\mathrm{3}\right){fig}\left({a}\right)\:{particle}\:{moving}\:{towards}\:{origin}\:{or}\:{away} \\ $$$$\left.\mathrm{4}\right){fig}\:{b}\:{particle}\:{moving}\:{towards}\:{origin}\:{or}\:{away} \\ $$$${questions}\:{for}\:\mathrm{10}+\mathrm{2}\:{students}… \\ $$
Commented by mr W last updated on 15/Nov/18
1) deaccelarated motion  2) deaccelarated motion  3) away from origin  4) towards origin
$$\left.\mathrm{1}\right)\:{deaccelarated}\:{motion} \\ $$$$\left.\mathrm{2}\right)\:{deaccelarated}\:{motion} \\ $$$$\left.\mathrm{3}\right)\:{away}\:{from}\:{origin} \\ $$$$\left.\mathrm{4}\right)\:{towards}\:{origin} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Nov/18
thank you sir...
$${thank}\:{you}\:{sir}… \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Nov/18
answer with explanation...  fig(a)  slope at t_1 >slope at t_2   (velocity)_t_1  >(velocity)_t_2   so velocity decreases  as time increases hence deaccelaration  now bothe slope for acute angle so particle  moving away from origin.  fig(b)  ∣tan(θ)_t_1  ∣>∣tan(θ)_t_2  ∣  so velocity decreases hence deaccelaration  but in fig(b) angle obtuse so particle moving  towards origin...
$${answer}\:{with}\:{explanation}… \\ $$$${fig}\left({a}\right) \\ $$$${slope}\:{at}\:{t}_{\mathrm{1}} >{slope}\:{at}\:{t}_{\mathrm{2}} \\ $$$$\left({velocity}\right)_{{t}_{\mathrm{1}} } >\left({velocity}\right)_{{t}_{\mathrm{2}} } \:{so}\:{velocity}\:{decreases} \\ $$$${as}\:{time}\:{increases}\:{hence}\:{deaccelaration} \\ $$$${now}\:{bothe}\:{slope}\:{for}\:{acute}\:{angle}\:{so}\:{particle} \\ $$$${moving}\:{away}\:{from}\:{origin}. \\ $$$${fig}\left({b}\right) \\ $$$$\mid{tan}\left(\theta\right)_{{t}_{\mathrm{1}} } \mid>\mid{tan}\left(\theta\right)_{{t}_{\mathrm{2}} } \mid \\ $$$${so}\:{velocity}\:{decreases}\:{hence}\:{deaccelaration} \\ $$$${but}\:{in}\:{fig}\left({b}\right)\:{angle}\:{obtuse}\:{so}\:{particle}\:{moving} \\ $$$${towards}\:{origin}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *