Question Number 48246 by ajfour last updated on 21/Nov/18
Commented by ajfour last updated on 21/Nov/18
$${Find}\:{a}/{b}\:,\:{if}\:{the}\:{ellipse}\:{parameters} \\ $$$${are}\:{even}\:{a}\:{and}\:{b}. \\ $$
Answered by mr W last updated on 21/Nov/18
$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{yy}'}{{b}^{\mathrm{2}} }=\mathrm{0} \\ $$$${P}\left({h},{k}\right) \\ $$$${y}'=−\frac{\mathrm{2}{b}}{\mathrm{2}{a}}=−\frac{{b}}{{a}} \\ $$$$\frac{{h}}{\mathrm{2}{b}}=\frac{\mathrm{2}{a}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\Rightarrow{h}=\frac{\mathrm{2}{ab}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\frac{{h}}{{a}^{\mathrm{2}} }−\frac{{k}}{{ab}}=\mathrm{0} \\ $$$$\Rightarrow{k}=\frac{{bh}}{{a}}=\frac{\mathrm{2}{b}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}+\frac{\mathrm{4}{b}^{\mathrm{4}} }{{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}=\mathrm{1} \\ $$$$\frac{\mathrm{8}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\mathrm{7}{b}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{a}}{{b}}=\sqrt{\mathrm{7}}=\mathrm{2}.\mathrm{65} \\ $$
Commented by ajfour last updated on 21/Nov/18
$${Much}\:{better}\:{solution}\:{Sir}! \\ $$
Answered by ajfour last updated on 21/Nov/18
$${Let}\:\:{P}\:\left({h},{k}\right) \\ $$$${eq}.\:{of}\:{tangent} \\ $$$$\:\:\:\:\:\:\frac{{hx}}{{a}^{\mathrm{2}} }+\frac{{ky}}{{b}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$${slope}\:=\:−\mathrm{tan}\:\theta\:=\:−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\left(\frac{{h}}{{k}}\right)\:\:\:..\left({i}\right) \\ $$$${If}\:{angle}\:{of}\:{tangent}\:{with}\:{x}-{axes} \\ $$$${is}\:\:\:\pi−\theta\:,\:{then} \\ $$$$\:\:\:\:{h}\:=\:\mathrm{2}{b}\mathrm{cos}\:\theta\:=\:\mathrm{2}{a}\mathrm{sin}\:\theta \\ $$$$\:\:\:\:{h}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)=\:\mathrm{4}\:\:\:\:\:\:\:….\left({ii}\right) \\ $$$$\:\:\:\Rightarrow\:\:\mathrm{tan}\:\theta\:=\:\frac{{b}}{{a}}\:\:\:\:\:\:\:\:…\left({iii}\right) \\ $$$${from}\:\:\left({i}\right)\&\left({iii}\right) \\ $$$$\:\:\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\left(\frac{{h}}{{k}}\right)\:=\:\frac{{b}}{{a}}\:\:\Rightarrow\:\:\frac{{h}}{{k}}\:=\:\frac{{a}}{{b}}\:\:\:…\left({iv}\right) \\ $$$${Also}\:\:\:\:\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:{h}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{h}^{\mathrm{2}} }×\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)=\:\mathrm{1} \\ $$$${using}\:\left({iii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:{h}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\right)\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\:\:\mathrm{2}{h}^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} \:\:\:\:……\left({v}\right) \\ $$$${using}\:\left({v}\right)\:{in}\:\left({ii}\right) \\ $$$$\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)\:=\:\mathrm{4} \\ $$$$\Rightarrow\:\:\:\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{8} \\ $$$${or}\:\:\:\:\:\:\:\:\frac{{a}}{{b}}\:=\:\sqrt{\overset{} {\mathrm{7}}}\:. \\ $$