Menu Close

Question-48367




Question Number 48367 by behi83417@gmail.com last updated on 22/Nov/18
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Nov/18
xy−1=(√3) (x+y)  (1/( (√3)))=((x+y)/(xy−1))  ((x+y)/(1−xy))=−(1/( (√3)))  tana=x   tanb=y    tanc=z  tan(a+b)=−(1/( (√3)))  tan(b+c)=−(1/( (√3)))  tan(a+c)=−(1/( (√3)))  tan(a+b)=tan(b+c)=tan(a+c)  so  a=b=c  so    tana=tanb=tanc  x=y=z  ((x+x)/(1−x×x))=−(1/( (√3)))  2(√3) x =−1(1−x^2 )  2(√3) x+1−x^2  =0  x^2 −2(√3) x−1=0  x=((2(√3) ±(√(12+4)) )/2)=(√3) ±2  x=y=z=(√3) ±2
$${xy}−\mathrm{1}=\sqrt{\mathrm{3}}\:\left({x}+{y}\right) \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}=\frac{{x}+{y}}{{xy}−\mathrm{1}} \\ $$$$\frac{{x}+{y}}{\mathrm{1}−{xy}}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${tana}={x}\:\:\:{tanb}={y}\:\:\:\:{tanc}={z} \\ $$$${tan}\left({a}+{b}\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${tan}\left({b}+{c}\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${tan}\left({a}+{c}\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${tan}\left({a}+{b}\right)={tan}\left({b}+{c}\right)={tan}\left({a}+{c}\right)\:\:{so} \\ $$$${a}={b}={c}\:\:{so} \\ $$$$ \\ $$$${tana}={tanb}={tanc} \\ $$$${x}={y}={z} \\ $$$$\frac{{x}+{x}}{\mathrm{1}−{x}×{x}}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{2}\sqrt{\mathrm{3}}\:{x}\:=−\mathrm{1}\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$$\mathrm{2}\sqrt{\mathrm{3}}\:{x}+\mathrm{1}−{x}^{\mathrm{2}} \:=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\:{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{2}\sqrt{\mathrm{3}}\:\pm\sqrt{\mathrm{12}+\mathrm{4}}\:}{\mathrm{2}}=\sqrt{\mathrm{3}}\:\pm\mathrm{2} \\ $$$${x}={y}={z}=\sqrt{\mathrm{3}}\:\pm\mathrm{2} \\ $$$$ \\ $$
Commented by behi83417@gmail.com last updated on 23/Nov/18
very beautiful method !god bless you sir.
$${very}\:{beautiful}\:{method}\:!{god}\:{bless}\:{you}\:{sir}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Nov/18
thank you sir...
$${thank}\:{you}\:{sir}… \\ $$
Answered by MJS last updated on 22/Nov/18
(1)  x=((1+y(√3))/(y−(√3)))  (2)  z=((1+y(√3))/(y−(√3)))=x  (3)  (((1+y(√3))^2 )/((y−(√3))^2 ))=2(√3)((1+y(√3))/(y−(√3)))+1  ⇒ y^2 −2(√3)y−1=0 ⇒ y=±2+(√3)  x=y=x=±2+(√3)
$$\left(\mathrm{1}\right)\:\:{x}=\frac{\mathrm{1}+{y}\sqrt{\mathrm{3}}}{{y}−\sqrt{\mathrm{3}}} \\ $$$$\left(\mathrm{2}\right)\:\:{z}=\frac{\mathrm{1}+{y}\sqrt{\mathrm{3}}}{{y}−\sqrt{\mathrm{3}}}={x} \\ $$$$\left(\mathrm{3}\right)\:\:\frac{\left(\mathrm{1}+{y}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }{\left({y}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{3}}\frac{\mathrm{1}+{y}\sqrt{\mathrm{3}}}{{y}−\sqrt{\mathrm{3}}}+\mathrm{1} \\ $$$$\Rightarrow\:{y}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}{y}−\mathrm{1}=\mathrm{0}\:\Rightarrow\:{y}=\pm\mathrm{2}+\sqrt{\mathrm{3}} \\ $$$${x}={y}={x}=\pm\mathrm{2}+\sqrt{\mathrm{3}} \\ $$
Commented by behi83417@gmail.com last updated on 23/Nov/18
so fast!thanks in advance sir.
$${so}\:{fast}!{thanks}\:{in}\:{advance}\:{sir}. \\ $$
Commented by MJS last updated on 23/Nov/18
if we see that x=y=z at start we can directly  go to x^2 =2(√3)x+1
$$\mathrm{if}\:\mathrm{we}\:\mathrm{see}\:\mathrm{that}\:{x}={y}={z}\:\mathrm{at}\:\mathrm{start}\:\mathrm{we}\:\mathrm{can}\:\mathrm{directly} \\ $$$$\mathrm{go}\:\mathrm{to}\:{x}^{\mathrm{2}} =\mathrm{2}\sqrt{\mathrm{3}}{x}+\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *