Question Number 48367 by behi83417@gmail.com last updated on 22/Nov/18
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Nov/18
$${xy}−\mathrm{1}=\sqrt{\mathrm{3}}\:\left({x}+{y}\right) \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}=\frac{{x}+{y}}{{xy}−\mathrm{1}} \\ $$$$\frac{{x}+{y}}{\mathrm{1}−{xy}}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${tana}={x}\:\:\:{tanb}={y}\:\:\:\:{tanc}={z} \\ $$$${tan}\left({a}+{b}\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${tan}\left({b}+{c}\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${tan}\left({a}+{c}\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${tan}\left({a}+{b}\right)={tan}\left({b}+{c}\right)={tan}\left({a}+{c}\right)\:\:{so} \\ $$$${a}={b}={c}\:\:{so} \\ $$$$ \\ $$$${tana}={tanb}={tanc} \\ $$$${x}={y}={z} \\ $$$$\frac{{x}+{x}}{\mathrm{1}−{x}×{x}}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{2}\sqrt{\mathrm{3}}\:{x}\:=−\mathrm{1}\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$$\mathrm{2}\sqrt{\mathrm{3}}\:{x}+\mathrm{1}−{x}^{\mathrm{2}} \:=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\:{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{2}\sqrt{\mathrm{3}}\:\pm\sqrt{\mathrm{12}+\mathrm{4}}\:}{\mathrm{2}}=\sqrt{\mathrm{3}}\:\pm\mathrm{2} \\ $$$${x}={y}={z}=\sqrt{\mathrm{3}}\:\pm\mathrm{2} \\ $$$$ \\ $$
Commented by behi83417@gmail.com last updated on 23/Nov/18
$${very}\:{beautiful}\:{method}\:!{god}\:{bless}\:{you}\:{sir}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Nov/18
$${thank}\:{you}\:{sir}… \\ $$
Answered by MJS last updated on 22/Nov/18
$$\left(\mathrm{1}\right)\:\:{x}=\frac{\mathrm{1}+{y}\sqrt{\mathrm{3}}}{{y}−\sqrt{\mathrm{3}}} \\ $$$$\left(\mathrm{2}\right)\:\:{z}=\frac{\mathrm{1}+{y}\sqrt{\mathrm{3}}}{{y}−\sqrt{\mathrm{3}}}={x} \\ $$$$\left(\mathrm{3}\right)\:\:\frac{\left(\mathrm{1}+{y}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }{\left({y}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{3}}\frac{\mathrm{1}+{y}\sqrt{\mathrm{3}}}{{y}−\sqrt{\mathrm{3}}}+\mathrm{1} \\ $$$$\Rightarrow\:{y}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}{y}−\mathrm{1}=\mathrm{0}\:\Rightarrow\:{y}=\pm\mathrm{2}+\sqrt{\mathrm{3}} \\ $$$${x}={y}={x}=\pm\mathrm{2}+\sqrt{\mathrm{3}} \\ $$
Commented by behi83417@gmail.com last updated on 23/Nov/18
$${so}\:{fast}!{thanks}\:{in}\:{advance}\:{sir}. \\ $$
Commented by MJS last updated on 23/Nov/18
$$\mathrm{if}\:\mathrm{we}\:\mathrm{see}\:\mathrm{that}\:{x}={y}={z}\:\mathrm{at}\:\mathrm{start}\:\mathrm{we}\:\mathrm{can}\:\mathrm{directly} \\ $$$$\mathrm{go}\:\mathrm{to}\:{x}^{\mathrm{2}} =\mathrm{2}\sqrt{\mathrm{3}}{x}+\mathrm{1} \\ $$