Menu Close

Question-48653




Question Number 48653 by ajfour last updated on 26/Nov/18
Commented by ajfour last updated on 26/Nov/18
Find  (r/R). Smaller sphere   inscribed inside tetrahedron  and larger one circumscribing the  tetrahedron (regular).
$${Find}\:\:\frac{{r}}{{R}}.\:{Smaller}\:{sphere} \\ $$$$\:{inscribed}\:{inside}\:{tetrahedron} \\ $$$${and}\:{larger}\:{one}\:{circumscribing}\:{the} \\ $$$${tetrahedron}\:\left({regular}\right). \\ $$
Answered by mr W last updated on 26/Nov/18
let a=edge length  (((√3)a)/2)×(2/3)=(((√3)a)/3)  (√(a^2 −((((√3)a)/3))^2 ))=(((√6)a)/3)  ((2R)/a)=(a/(((√6)a)/3))  ⇒R=(((√6)a)/4)  (((((√6)a)/3)−r)/r)=((((√3)a)/2)/(((√3)a)/6))=3  ⇒r=(((√6)a)/(12))  ⇒(r/R)=(1/3)
$${let}\:{a}={edge}\:{length} \\ $$$$\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}×\frac{\mathrm{2}}{\mathrm{3}}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{3}} \\ $$$$\sqrt{{a}^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}} \\ $$$$\frac{\mathrm{2}{R}}{{a}}=\frac{{a}}{\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}}} \\ $$$$\Rightarrow{R}=\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{4}} \\ $$$$\frac{\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}}−{r}}{{r}}=\frac{\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}}{\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{6}}}=\mathrm{3} \\ $$$$\Rightarrow{r}=\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{12}} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by ajfour last updated on 26/Nov/18
Thank you Sir.  And if tetrahedron is replaced  by a cube,  then  r/R = 1/(√3) .
$${Thank}\:{you}\:{Sir}. \\ $$$${And}\:{if}\:{tetrahedron}\:{is}\:{replaced} \\ $$$${by}\:{a}\:{cube},\:\:{then}\:\:{r}/{R}\:=\:\mathrm{1}/\sqrt{\mathrm{3}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *