Menu Close

Question-48703




Question Number 48703 by cesar.marval.larez@gmail.com last updated on 27/Nov/18
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18
3)∫sin^3 (2x)cos(2x)dx  t=sin2x   dt=2cos2xdx  =(1/2)∫t^3 dt  =(1/2)×(t^4 /4)+c  =(((sin2x)^4 )/8)+c  4)∫cos^5 (2x)sin^3 (2x)dx  t=cos2x   dt=−2sin2xdx  ∫t^5 ×(1−t^2 )×(dt/(−2))  =((−1)/2)∫t^5 −t^7    dt  =((−1)/2)[(t^6 /6)−(t^8 /8)]+c  =((−1)/2)[(((cos2x)^6 )/6)−(((cos2x)^8 )/8)]+c
3)sin3(2x)cos(2x)dxt=sin2xdt=2cos2xdx=12t3dt=12×t44+c=(sin2x)48+c4)cos5(2x)sin3(2x)dxt=cos2xdt=2sin2xdxt5×(1t2)×dt2=12t5t7dt=12[t66t88]+c=12[(cos2x)66(cos2x)88]+c

Leave a Reply

Your email address will not be published. Required fields are marked *