Question-48703 Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 48703 by cesar.marval.larez@gmail.com last updated on 27/Nov/18 Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18 3)∫sin3(2x)cos(2x)dxt=sin2xdt=2cos2xdx=12∫t3dt=12×t44+c=(sin2x)48+c4)∫cos5(2x)sin3(2x)dxt=cos2xdt=−2sin2xdx∫t5×(1−t2)×dt−2=−12∫t5−t7dt=−12[t66−t88]+c=−12[(cos2x)66−(cos2x)88]+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-cos-4-x-1-3-1-cos-2-x-cos-4-x-Next Next post: Q-1-Coefficient-of-a-8-b-4-c-9-d-9-in-expansion-of-abc-abd-acd-bcd-10-Q-2-Coefficient-of-1-x-in-expansion-of-1-x-n-1-1-x-n-Q-3-If-x-m-occurs-in-expansion-of-x-1-x-2-2n Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.