Menu Close

Question-48744




Question Number 48744 by peter frank last updated on 28/Nov/18
Answered by Abdulhafeez Abu qatada last updated on 28/Nov/18
    ((x + iy))^(1/3)  = a + ib  x + iy = (a + ib)^3   x + iy = a^3  + 3ia^2 b − 3ab^2 −ib^3   x + iy = a^3  − 3ab^2 + i(3a^2 b − b^3 )  Compare the real and imaginary parts  a^3  − 3ab^2  = x .....(1)  3a^2 b − b^3  = y  .....(2)    add (1) and (2)  a^3  − b^3  − 3ab^2  + 3a^2 b = x + y  a^3  − b^3  + 3ab(a − b) = x + y  (a − b)(a^2  + b^2  + ab) + 3ab(a − b) = x + y  (a − b)(a^2  + b^2  + ab + 3ab) = x + y  (a − b)(a^2  + b^2  + 4ab) = x + y ....∗∗∗    Multiply (1) by a and (2) by b    a^4  − 3a^2 b^2  = ax .....(3)  3a^2 b^2  − b^4  = by  .....(4)    add (3) and (4)  a^4  − b^4  = ax + by  a^2  + b^2  = ((ax + by)/(a^2  − b^2 ))  Insert in ∗∗∗  (a − b)(a^2  + b^2  + 4ab) = x + y  (a − b)(((ax + by)/(a^2  − b^2 )) + 4ab) = x + y   (((a − b))/((a^2  − b^2 )))(ax + by + 4ab(a^2  − b^2 ) = x + y  (1/(a + b))(ax + by + 4ab(a^2  − b^2 ) = x + y  ax + by + 4ab(a^2  − b^2 ) = (x + y)(a + b)  ax + by + 4ab(a^2  − b^2 ) =  ax + by + bx + ay  4ab(a^2  − b^2 ) = bx + ay  divide through by ab  4(a^2  − b^2 ) = (x/a) + (y/b)    Hafeez Ayinde(Abu qatada)
$$ \\ $$$$ \\ $$$$\sqrt[{\mathrm{3}}]{{x}\:+\:{iy}}\:=\:{a}\:+\:{ib} \\ $$$${x}\:+\:{iy}\:=\:\left({a}\:+\:{ib}\right)^{\mathrm{3}} \\ $$$${x}\:+\:{iy}\:=\:{a}^{\mathrm{3}} \:+\:\mathrm{3}{ia}^{\mathrm{2}} {b}\:−\:\mathrm{3}{ab}^{\mathrm{2}} −{ib}^{\mathrm{3}} \\ $$$${x}\:+\:{iy}\:=\:{a}^{\mathrm{3}} \:−\:\mathrm{3}{ab}^{\mathrm{2}} +\:{i}\left(\mathrm{3}{a}^{\mathrm{2}} {b}\:−\:{b}^{\mathrm{3}} \right) \\ $$$${Compare}\:{the}\:{real}\:{and}\:{imaginary}\:{parts} \\ $$$${a}^{\mathrm{3}} \:−\:\mathrm{3}{ab}^{\mathrm{2}} \:=\:{x}\:…..\left(\mathrm{1}\right) \\ $$$$\mathrm{3}{a}^{\mathrm{2}} {b}\:−\:{b}^{\mathrm{3}} \:=\:{y}\:\:…..\left(\mathrm{2}\right) \\ $$$$ \\ $$$${add}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right) \\ $$$${a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} \:−\:\mathrm{3}{ab}^{\mathrm{2}} \:+\:\mathrm{3}{a}^{\mathrm{2}} {b}\:=\:{x}\:+\:{y} \\ $$$${a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} \:+\:\mathrm{3}{ab}\left({a}\:−\:{b}\right)\:=\:{x}\:+\:{y} \\ $$$$\left({a}\:−\:{b}\right)\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{ab}\right)\:+\:\mathrm{3}{ab}\left({a}\:−\:{b}\right)\:=\:{x}\:+\:{y} \\ $$$$\left({a}\:−\:{b}\right)\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{ab}\:+\:\mathrm{3}{ab}\right)\:=\:{x}\:+\:{y} \\ $$$$\left({a}\:−\:{b}\right)\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:\mathrm{4}{ab}\right)\:=\:{x}\:+\:{y}\:….\ast\ast\ast \\ $$$$ \\ $$$${Multiply}\:\left(\mathrm{1}\right)\:{by}\:{a}\:{and}\:\left(\mathrm{2}\right)\:{by}\:{b} \\ $$$$ \\ $$$${a}^{\mathrm{4}} \:−\:\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:=\:{ax}\:…..\left(\mathrm{3}\right) \\ $$$$\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:−\:{b}^{\mathrm{4}} \:=\:{by}\:\:…..\left(\mathrm{4}\right) \\ $$$$ \\ $$$${add}\:\left(\mathrm{3}\right)\:{and}\:\left(\mathrm{4}\right) \\ $$$${a}^{\mathrm{4}} \:−\:{b}^{\mathrm{4}} \:=\:{ax}\:+\:{by} \\ $$$${a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:=\:\frac{{ax}\:+\:{by}}{{a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} } \\ $$$${Insert}\:{in}\:\ast\ast\ast \\ $$$$\left({a}\:−\:{b}\right)\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:\mathrm{4}{ab}\right)\:=\:{x}\:+\:{y} \\ $$$$\left({a}\:−\:{b}\right)\left(\frac{{ax}\:+\:{by}}{{a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} }\:+\:\mathrm{4}{ab}\right)\:=\:{x}\:+\:{y}\: \\ $$$$\frac{\left({a}\:−\:{b}\right)}{\left({a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \right)}\left({ax}\:+\:{by}\:+\:\mathrm{4}{ab}\left({a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \right)\:=\:{x}\:+\:{y}\right. \\ $$$$\frac{\mathrm{1}}{{a}\:+\:{b}}\left({ax}\:+\:{by}\:+\:\mathrm{4}{ab}\left({a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \right)\:=\:{x}\:+\:{y}\right. \\ $$$${ax}\:+\:{by}\:+\:\mathrm{4}{ab}\left({a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \right)\:=\:\left({x}\:+\:{y}\right)\left({a}\:+\:{b}\right) \\ $$$${ax}\:+\:{by}\:+\:\mathrm{4}{ab}\left({a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \right)\:=\:\:{ax}\:+\:{by}\:+\:{bx}\:+\:{ay} \\ $$$$\mathrm{4}{ab}\left({a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \right)\:=\:{bx}\:+\:{ay} \\ $$$${divide}\:{through}\:{by}\:{ab} \\ $$$$\mathrm{4}\left({a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \right)\:=\:\frac{{x}}{{a}}\:+\:\frac{{y}}{{b}} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{Hafeez}}\:\boldsymbol{\mathrm{Ayinde}}\left(\boldsymbol{\mathrm{Abu}}\:\boldsymbol{\mathrm{qatada}}\right) \\ $$
Commented by peter frank last updated on 28/Nov/18
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by Kunal12588 last updated on 28/Nov/18
x+iy=a^3 +b^3 i^3 +3a^2 bi+3ab^2 i^2   ⇒x+iy=a^3 −b^3 i+3a^2 bi−3ab^2   ⇒x+iy=a^3 −3ab^2 +(3a^2 b−b^3 )i  x=a^3 −3ab^2 ,   y=3a^2 b−b^3   ⇒(x/a)=a^2 −3b^2 ,  ⇒(y/b)=3a^2 −b^2   ⇒(x/a)+(y/b)=a^2 −3b^2 +3a^2 −b^2   ⇒4(a^2 −b^2 )=(x/a)+(y/b)
$${x}+{iy}={a}^{\mathrm{3}} +{b}^{\mathrm{3}} {i}^{\mathrm{3}} +\mathrm{3}{a}^{\mathrm{2}} {bi}+\mathrm{3}{ab}^{\mathrm{2}} {i}^{\mathrm{2}} \\ $$$$\Rightarrow{x}+{iy}={a}^{\mathrm{3}} −{b}^{\mathrm{3}} {i}+\mathrm{3}{a}^{\mathrm{2}} {bi}−\mathrm{3}{ab}^{\mathrm{2}} \\ $$$$\Rightarrow{x}+{iy}={a}^{\mathrm{3}} −\mathrm{3}{ab}^{\mathrm{2}} +\left(\mathrm{3}{a}^{\mathrm{2}} {b}−{b}^{\mathrm{3}} \right){i} \\ $$$${x}={a}^{\mathrm{3}} −\mathrm{3}{ab}^{\mathrm{2}} ,\:\:\:{y}=\mathrm{3}{a}^{\mathrm{2}} {b}−{b}^{\mathrm{3}} \\ $$$$\Rightarrow\frac{{x}}{{a}}={a}^{\mathrm{2}} −\mathrm{3}{b}^{\mathrm{2}} ,\:\:\Rightarrow\frac{{y}}{{b}}=\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{x}}{{a}}+\frac{{y}}{{b}}={a}^{\mathrm{2}} −\mathrm{3}{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)=\frac{{x}}{{a}}+\frac{{y}}{{b}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *