Menu Close

Question-48745




Question Number 48745 by peter frank last updated on 28/Nov/18
Answered by Kunal12588 last updated on 28/Nov/18
(i)unique solution  (a_1 /a_2 )≠(b_1 /b_2 )  (2/4)≠(3/a)  a≠6  a∈R−{6},  b∈R  (ii)infinite no. of solution  (a_1 /a_2 )=(b_1 /b_2 )=(c_1 /c_2 )  (2/4)=(3/a)⇒a=6  (2/4)=(1/b)⇒b=2  (iii) no solution  (a_1 /a_2 )=(b_1 /b_2 )≠(c_1 /c_2 )  a=6  b∈R−{2}
$$\left({i}\right){unique}\:{solution}\:\:\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{2}} }\neq\frac{{b}_{\mathrm{1}} }{{b}_{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}}{\mathrm{4}}\neq\frac{\mathrm{3}}{{a}} \\ $$$${a}\neq\mathrm{6} \\ $$$${a}\in\mathbb{R}−\left\{\mathrm{6}\right\},\:\:{b}\in\mathbb{R} \\ $$$$\left({ii}\right){infinite}\:{no}.\:{of}\:{solution}\:\:\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{2}} }=\frac{{b}_{\mathrm{1}} }{{b}_{\mathrm{2}} }=\frac{{c}_{\mathrm{1}} }{{c}_{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}}{\mathrm{4}}=\frac{\mathrm{3}}{{a}}\Rightarrow{a}=\mathrm{6} \\ $$$$\frac{\mathrm{2}}{\mathrm{4}}=\frac{\mathrm{1}}{{b}}\Rightarrow{b}=\mathrm{2} \\ $$$$\left({iii}\right)\:{no}\:{solution}\:\:\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{2}} }=\frac{{b}_{\mathrm{1}} }{{b}_{\mathrm{2}} }\neq\frac{{c}_{\mathrm{1}} }{{c}_{\mathrm{2}} } \\ $$$${a}=\mathrm{6} \\ $$$${b}\in\mathbb{R}−\left\{\mathrm{2}\right\} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *