Question Number 48757 by sandeepkeshari0797@gmail.com last updated on 28/Nov/18
Commented by maxmathsup by imad last updated on 28/Nov/18
$${method}\:{with}\:{one}\:{parametr}\:{let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sint}}{{t}}\:{e}^{−{tx}} {dt}\:{with}\:{x}\geqslant\mathrm{0}\:{we}\:{have} \\ $$$${f}^{'} \left({x}\right)=−\int_{\mathrm{0}} ^{\infty} \:\:{sint}\:{e}^{−{tx}} {dt}\:=−{Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{{it}−{xt}} {dt}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−{x}+{i}\right){t}} {dt}\:=\left[\frac{\mathrm{1}}{−{x}+{i}}\:{e}^{\left(−{x}+{i}\right){t}} \right]_{{t}=\mathrm{0}} ^{\infty} \:=−\frac{\mathrm{1}}{−{x}+{i}}\:=\frac{\mathrm{1}}{{x}−{i}}\:=\frac{{x}+{i}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)=−\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow\:{f}\left({x}\right)=−{arctan}\left({x}\right)+{c}\:{we}\:{have} \\ $$$${c}={lim}_{{x}\rightarrow+\infty} \left({f}\left({x}\right)+{arctan}\left({x}\right)\right)\:=\frac{\pi}{\mathrm{2}}\:+{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:{but}\:\exists{m}>\mathrm{0}\:/ \\ $$$$\mid{f}\left({x}\right)\mid\leqslant\int_{\mathrm{0}} ^{\infty} \:\mid\frac{{sint}}{{t}}\mid{e}^{−{tx}} {dt}\:\leqslant{m}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}} {dt}\:=\frac{{m}}{{x}}\:\rightarrow\mathrm{0}\:\left({x}\rightarrow+\infty\right)\:\Rightarrow{c}=\frac{\pi}{\mathrm{2}}\:{so} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}\right)}{{t}}\:{e}^{−{xt}} {dt}\:=\frac{\pi}{\mathrm{2}}\:−{arctan}\left({x}\right)\: \\ $$$${x}=\mathrm{0}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sint}}{{t}}\:{dt}\:=\frac{\pi}{\mathrm{2}}\:. \\ $$
Commented by maxmathsup by imad last updated on 01/Dec/18
$${f}\left({x}\right)={L}\left(\frac{{sinx}}{{x}}\right). \\ $$
Answered by Abdulhafeez Abu qatada last updated on 28/Nov/18
$$ \\ $$$$ \\ $$$${using}\:{Laplace}\:{transforms} \\ $$$${L}\left\{\frac{{f}\left({t}\right)}{{t}}\right\}\:=\:\underset{\sigma={s}} {\overset{\infty} {\int}}{F}\left(\sigma\right)\:{d}\sigma\: \\ $$$${L}\left\{{sint}\right\}\:=\:{F}\left({s}\right)\:=\:\frac{\mathrm{1}}{{s}^{\mathrm{2}} \:+\:\mathrm{1}},{F}\left(\sigma\right)\:=\:\frac{\mathrm{1}}{\sigma^{\mathrm{2}} \:+\:\mathrm{1}} \\ $$$$ \\ $$$${L}\left\{\frac{{sint}}{{t}}\right\}\:=\:\underset{\sigma={s}} {\overset{\infty} {\int}}\:\frac{\mathrm{1}}{\sigma^{\mathrm{2}} \:+\:\mathrm{1}}\:{d}\sigma\: \\ $$$${L}\left\{\frac{{sint}}{{t}}\right\}\:=\:\left[{tan}^{−\mathrm{1}} \left\{\sigma\right\}\right]_{\sigma={s}} ^{\infty} \\ $$$${L}\left\{\frac{{sint}}{{t}}\right\}\:=\:\frac{\pi}{\mathrm{2}}\:−\:{tan}^{−\mathrm{1}} \left\{{s}\right\} \\ $$$${L}\left\{\frac{{sint}}{{t}}\right\}\:=\:{tan}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{{s}}\right\} \\ $$$${L}\left\{\frac{{sint}}{{t}}\right\}\:=\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{sint}}{{t}}.{e}^{−{st}} \:=\:{tan}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{{s}}\right\} \\ $$$${when}\:{s}\:=\:\mathrm{0} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{sint}}{{t}}.{e}^{−\left(\mathrm{0}\right){t}} \:=\:\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}\left({tan}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{{s}}\right\}\right)\:=\:\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{sint}}{{t}}\:=\:\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Nov/18
$${solving}\:{another}\:{way}…{let} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{at}} {sinbt}}{{t}}{dt} \\ $$$$\frac{{dI}}{{db}}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{at}} }{{t}}×\frac{\partial}{\partial{b}}\left({sinbt}\right){dt} \\ $$$$\frac{{dI}}{{db}}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{at}} {cosbt}×{t}}{{t}}{dt} \\ $$$$\frac{{dI}}{{db}}=\int_{\mathrm{0}} ^{\infty} {e}^{−{at}} {cosbtdt}=\frac{{a}^{} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left[{forula}\right] \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{at}} {sinbt}\:{dt}=\frac{{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\left[{formula}\right] \\ $$$${now}\:\frac{{dI}}{{db}}=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${dI}=\frac{{adb}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\int{dI}={a}\int\frac{{db}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${I}={a}×\frac{\mathrm{1}}{{a}}{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right)+{c} \\ $$$${put}\:{b}=\mathrm{0}\:{in}\:\:\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{at}} {sinbt}}{{t}}{dt}\:\:{results}=\mathrm{0} \\ $$$${so}\:\mathrm{0}={tan}^{−\mathrm{1}} \left(\frac{\mathrm{0}}{{a}}\right)+{c}\:\:{hence}\:{c}=\mathrm{0} \\ $$$${I}={tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right) \\ $$$${so}\:\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{at}} {sinbt}}{{t}}={tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right) \\ $$$${but}\:{question}\:{is}\:\int_{\mathrm{0}} ^{\infty} \frac{{sint}}{{t}}{dt} \\ $$$${so}\:{put}\:{a}=\mathrm{0}\:\:\:{b}=\mathrm{1}\:{in}\:{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right) \\ $$$$={tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{0}}\right)=\frac{\pi}{\mathrm{2}}\:\:{answer} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Abdulhafeez Abu qatada last updated on 28/Nov/18
$${wonderful}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Nov/18
$${thank}\:{you}\:{sir}… \\ $$