Menu Close

Question-48763




Question Number 48763 by mr W last updated on 28/Nov/18
Commented by mr W last updated on 28/Nov/18
Find R in terms of a, b, c.
FindRintermsofa,b,c.
Answered by ajfour last updated on 28/Nov/18
Answered by ajfour last updated on 28/Nov/18
Rsin θ = (a/2)  2Rcos (θ+α)=(√(b^2 +c^2 ))  ⇒ 2R(cos θcos α−sin θsin α)=(√(b^2 +c^2 ))  2R(cos θ×(b/( (√(b^2 +c^2 ))))−(a/(2R))×(c/( (√(b^2 +c^2 )))))=(√(b^2 +c^2 ))  ⇒ 2bRcos θ=b^2 +c^2 +ac  or    (4R^2 −a^2 )b^2  = (b^2 +c^2 +ac)^2         4R^2  = a^2 +(((b^2 +c^2 +ac)^2 )/b^2 )       R = (1/2)(√(a^2 +(((b^2 +c^2 +ac)^2 )/b^2 ))) .
Rsinθ=a22Rcos(θ+α)=b2+c22R(cosθcosαsinθsinα)=b2+c22R(cosθ×bb2+c2a2R×cb2+c2)=b2+c22bRcosθ=b2+c2+acor(4R2a2)b2=(b2+c2+ac)24R2=a2+(b2+c2+ac)2b2R=12a2+(b2+c2+ac)2b2.
Commented by mr W last updated on 28/Nov/18
correct! thank you sir!
correct!thankyousir!
Commented by mr W last updated on 28/Nov/18
alternative way:  circumcircle of a triangle with sides:  a  (√(b^2 +c^2 ))  (√(b^2 +(a+c)^2 ))    R=((a(√((b^2 +c^2 )(b^2 +(a+c)^2 ))))/(4A))  A=((ab)/2)  R=((a(√((b^2 +c^2 )(b^2 +(a+c)^2 ))))/(2ab))  ⇒R=((√((b^2 +c^2 )(b^2 +(a+c)^2 )))/(2b))
alternativeway:circumcircleofatrianglewithsides:ab2+c2b2+(a+c)2R=a(b2+c2)(b2+(a+c)2)4AA=ab2R=a(b2+c2)(b2+(a+c)2)2abR=(b2+c2)(b2+(a+c)2)2b

Leave a Reply

Your email address will not be published. Required fields are marked *